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Abstract—The frequency-domain adaptive filter (FDAF) is very
useful for instance acoustic signal processing. The partitioned-
block FDAF (PBFDAF) is a generalization of the FDAF and
becomes more popular due to its low latency. Some efforts have
been done toward the convergence analysis of PBFDAFs, but they
usually use strong approximations and hence came to inaccurate
results. This paper presents a unified approach to the transient
analysis of both the constrained and unconstrained PBFDAFs
based on the overlap-save structure. Using the independence
assumption, we derive the analytical expressions for the mean
and mean-square performance of PBFDAFs. Our analysis does
not assume a specific model for the inputs and provides a quite
general framework. Computer simulations confirm a good match
between our theory and experimental results.

Index Terms—Adaptive filtering, frequency domain, conver-
gence analysis, transient behavior

I. INTRODUCTION

In many applications, such as acoustic system identification
[1]–[3], equalization [4], radar and communications [5], a long
FIR filter is required. The time-domain adaptive filters are
computationally inefficient for such an application [6]–[8]. An
attractive solution to this problem is to adopt the frequency-
domain adaptive filter (FDAF) [9]–[12], which achieves a
significant computational saving using the FFT. However, the
FDAF introduces two-block latency for data collecting and
algorithm execution. Though the delayless structure can be
employed to remove the delay [13]–[15], it is undesired to
implement the FFT with large size. The partitioned block
FDAF (PBFDAF) was then introduced to reduce the algorithm
latency by splitting the impulse response into several smaller-
size sub-filters [16]–[21].

Many efforts have been devoted toward the statistical con-
vergence analysis of the FDAFs [22]–[29]. However, only a
few studies focused on the analysis of the PBFDAF algo-
rithm [30]–[34]. The relationship between the convergence
properties and the number of partitions was investigated in
[30]. The matrices that control the mean weight behavior of a
family of PBFDAF algorithms were comprehensively analyzed
based on the eigenvalue evaluation in [33]. The transient
performance of the PBFDAF was presented in [31], [32] using
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strong approximations on the moment matrices, and hence the
theoretical results are not accurate. In [34], a convergence
analysis of the constrained PBFDAF was performed in the
interest of concluding an optimal step size.

This paper presents an analytical model for the transient
performance of a family of the PBFDAF algorithm with 50%
overlap. The update equations of the constrained and uncon-
strained PBFDAFs are rewritten in a unified and compact
form that is beneficially used for the convergence analysis.
We derive the expressions for the mean-square deviation
(MSD) and mean-square error (MSE) learning curves using the
independence assumption and the ‘vec’ operation. Computer
simulations are carried out to verify the theoretical predictions.

II. PBFDAF ALGORITHMS

We revisit the PBFDAF in a system identification problem.
The desired signal d(n) arises from the linear model

d(n) = xT (n)w + v(n), (1)

where (·)T denote the transpose operation, w =
[w0, ..., wN−1]

T is the weight vector of the unknown
system of length N , x(n) = [x(n), ..., x(n−N + 1)]T is the
input signal vector, and v(n) denotes the independent system
noise.

An adaptive filter ŵ(n) of length N is used to identi-
fy the unknown plant. In the PBFDAF algorithm [7], the
model filter ŵ(n) is partitioned into P smaller-size seg-
ments as ŵ(n) = [ŵT

0 (n), ..., ŵ
T
P−1(n)]

T , where ŵp(n) =
[ŵpL(n), ..., ŵ(p+1)L−1(n)]

T is the p-th subfilter with L =
N/P taps. Thus, the error signal can be written as

e(n) = d(n)−
P−1∑
p=0

x̄T
p (n)ŵp(n), (2)

where x̄p(n) = [x(n− pL), ..., x(n− (p+ 1)L+ 1)]T . Each
of the linear convolutions in (2) can be computed efficiently
using the FFT. The frequency-domain input matrix of the p-th
partition is

Xp(k) = diag{[Xp,0(k), ..., Xp,2L−1(k)]
T }

= diag{Fxp(k)},
(3)

where k is the frame index, diag(·) creates a diagonal matrix,
F is the Fourier matrix of size 2L × 2L, and xp(k) =
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[x((k − p− 1)L), ..., x((k − p+ 1)L− 1)]
T . The frequency-

domain weight vector of the p-th partition is

Ŵp(k) = F[ŵT
p (kL),01×L]

T

= [Ŵp,0(k), ..., Ŵp,2L−1(k)]
T .

(4)

The frequency-domain error signal vector E(k) reads

E(k) = D(k)−G01
P−1∑
p=0

Xp(k)Ŵp(k)

= [E0(k), · · · , E2L−1(k)]
T ,

(5)

where D(k) = F[01×L, d(kL), ..., d(kL+ L− 1)]
T is

the frequency-domain desired signal vector, and G01 =

F

[
0L 0L

0L IL

]
F−1 is the windowing matrix that forces the

first L elements to zero (the notations 01×L, 0L and IL being
the 1× L all-zero vector, L× L zero and identity matrices).

There are two kinds of PBFDAF algorithms, namely, the
constrained version and unconstrained version. The update
equation of the unconstrained PBFDAF is [7], [33]

Ŵp(k + 1) = Ŵp(k) + μΛ−1XH
p (k)E(k). (6)

where (·)H denote Hermitian operator, μ is the step size, and
Λ = E [XH

0 (k)X0(k)] is the power spectral density matrix
of the input signal (E [·] being the mathematical expectation).
In practice, the PSD matrix Λ can be estimated through
recursively smoothing the DFT coefficients [7], [11].

The update equation of the constrained PBFDAF is [7], [16]

Ŵp(k + 1) = FQ10F−1[Ŵp(k) + μΛ−1(k)XH
p (k)E(k)],

(7)

where Q10 =

[
IL 0L

0L 0L

]
is the constraint matrix that

constrains the last L time-domain elements of Ŵp(k + 1)
to zero.

Using (6) and (7), we can write the update equations of the
constrained and unconstrained PBFDAFs in a unified form

Ŵp(k + 1) = G10[Ŵp(k) + μΛ−1XH
p (k)E(k)], (8)

where G10 = FQ10F−1 for the constrained version, and
G10 = I2L for the unconstrained version.

We found that it is somewhat tedious to carry out the
convergence analysis using (8). To alleviate the difficulty, we
firstly define a super input matrix X(k) with size 2L× 2LP

X(k) = [X0(k) X1(k) · · ·XP−1(k)]. (9)

We then construct a super weight vector Ŵ(k) with size
2LP × 1 by stacking all the sub-weight vectors

Ŵ(k) = [ŴT
0 (k) ŴT

1 (k) · · ·ŴT
P−1(k)]

T . (10)

Using (9) and (10), we can rewrite (5) in a matrix-vector
formulation

E(k) = D(k)−G01X(k)Ŵ(k). (11)

The update equation (8) can be represented more compactly
as

Ŵ(k + 1) = G10[Ŵ(k) + μL−1XH(k)E(k)], (12)

where L and G are both block diagonal matrices given by

L = blkdiag{Λ, . . . ,Λ} (13)

G10 = blkdiag{G10, . . . ,G10}. (14)

We will use (11) and (12) to analyze the transient behaviors
of the two versions of PBFDAF.

III. TRANSIENT ANALYSIS

A. Model and assumptions

Analogously to (2), we rewrite (1) as

d(n) =
P−1∑
p=0

x̄T
p (n)wp + v(n) (15)

where wp = [wpL, ..., w(p+1)L−1]
T . We then get a frequency-

domain representation of the model in (1)

D(k) = G01
P−1∑
p=0

Xp(k)Wp +V(k), (16)

where Wp = F[wT
p ,01×L]

T is the DFT of wp, and

V(k) = F[01×L, v(kL), ..., v(kL+ L− 1)]
T

= [V0(k), ..., V2L−1(k)]
T

(17)

is the frequency-domain noise vector. We define a 2LP × 1
super vector W by stacking all the sub-weights together

W = [WT
0 WT

1 · · ·WT
P−1]

T . (18)

Using (18), we can also write the desired signal vector (16)
in a more compact form

D(k) = G01X(k)W +V(k). (19)

Substituting (19) into (11) yields

E(k) = G01X(k)W̃(k) +V(k), (20)

where W̃(k) = W − Ŵ(k) is the frequency-domain weight
error vector.

To make the analysis tractable, we adopt two assumptions.
A1). The sequences Xi(k) and V(k) are zero-mean and
stationary random processes, and the noise vector V(k) is
independent of any other signals. A2). The frequency-domain
weight error vector W̃i(k) and the input sequence Xj(k) are
independent of each other. The second one is the well-known
independence assumption [5]–[8] and has been widely used
for the statistical analysis of adaptive filters.

B. Mean weight behavior

Subtracting the true weight vector W from both sides of
(12) and using the fact that Ŵ(k) = G10Ŵ(k), we have

W̃(k + 1) = G10[W̃(k)− μL−1XH(k)E(k)]. (21)

Substituting (20) into (21), we get

W̃(k + 1) = G10[W̃(k)− μL−1XH(k)G01X(k)W̃(k)
− μL−1XH(k)V(k)].

(22)
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Taking the mathematical expectation on both sides of (22) and
using the above two assumptions, we obtain

E [W̃(k + 1)] = SE [W̃(k)], (23)

where
S = G10

{
I2L − μE [AH(k)]

}
, (24)

A(k) = XH(k)G01X(k)L−1. (25)

The eigenvalue spread of the matrix S controls the mean
convergence of the PBFDAF algorithm. A thorough analysis
of the properties of E [A(k)] can be found in [33].

C. Mean-square convergence

Using (25), we can then rewrite (22) as

W̃(k + 1) = G10[W̃(k)− μAH(k)W̃(k)

− μL−1XH(k)V(k)].
(26)

Multiplying both sides of (26) from the right by their respec-
tive Hermitian transposes and using the two assumptions, one
has

E [W̃(k + 1)W̃H(k + 1)]

= G10
{E [W̃(k)W̃H(k)]

− μE [W̃(k)W̃H(k)]E [A(k)]

− μE [AH(k)]E [W̃(k)W̃H(k)]

+ μ2E [AH(k)W̃(k)W̃H(k)A(k)]

+ μ2E [L−1XH(k)ΦvX(k)L−1]
}G10,

(27)

where Φv = E [V(k)VH(k)] is the noise covariance matrix.
To obtain an analytical model for the mean square behav-

iors, we resort to the ‘vec’ operator that transforms the matrix
into a vector [6]. To proceed, we first introduce a property
of the ‘vec’ operator. For the matrices M, N and Σ with
compatible dimensions, the following relation holds [35]

vec(MΣN) = (NT ⊗M)vec(Σ), (28)

where vec(·) creates a column vector through stacking the
successive columns of the augmented matrix, and ⊗ stands
for the Kronecker product.

Define a (2LP )2 × 1 vector z(k) that is constructed by
stacking all the column vectors of the weight error covariance
matrix E [W̃(k)W̃H(k)]

z(k) = vec
{
E [W̃(k)W̃H(k)]

}
=

{
E [W̃0,0(k)W̃

∗
0,0(k)], E [W̃0,1(k)W̃

∗
0,0(k)],

· · · , E [W̃P−1,2L−1(k)W̃
∗
P−1,2L−1(k)]

} T

Δ
= [z0,0,0,0(k), z0,1,0,0(k), · · · ,

zP−1,2L−1,P−1,2L−1(k)]
T ,

(29)

such that zp,i,q,j(k) = E [W̃p,i(k)W̃
∗
q,j(k)]. Applying the ‘vec’

operator to both sides of (27) and using the property in (28),
we then obtain a (2LP )2-dimensional state recursion that
describes the evolution of the mean-square learning curves of
the PBFDAF algorithms

z(k + 1) = Θz(k) +Ψ, (30)

where

Θ =
[
(G10)

T ⊗ G10
] (

I(2LP )2 − μC+ μ2J
)
, (31)

Ψ = μ2[(G10)T ⊗ G10]vec
{E [L−1XH(k)ΦvX(k)L−1]

}
(32)

with the (2LP )2 × (2LP )2 matrices C and J given by

C = E [AT (k)]⊗ I2LP + I2LP ⊗ E [AH(k)], (33)

J = E [AT (k)⊗AH(k)]. (34)

As indicated by (30), the eigenvalues of the matrix Θ fully
characterize the second-order convergence rate of various
forms of the PBFDAF. It is interesting to study eigenvalue
spread of Θ for a better understanding of the mean-square
behavior of various PBFDAFs, which is beyond the scope of
this paper. The MSD learning curve of the PBFDAFs can then
be computed by

Δ(k) = E
(∥∥∥W̃(k)

∥∥∥2
)

=
P−1∑
p=0

2L−1∑
i=0

zp,i,p,i(k). (35)

We then evaluate the MSE learning curve of the PBFDAFs.
Because the PBFDAF is implemented on a block-by-block
basis, the MSE of the PBFDAF algorithm is given by [6]

ξ(k) =
1

L
E
[L−1∑
i=0

e2(kL+ i)
]
. (36)

Using the DFT properties, it is easy to show that ξ(k) can be
evaluated in the frequency domain directly

ξ(k) =
1

2L2
E [EH(k)E(k)]. (37)

Substituting (20) into (37) and using the two assumptions, we
then obtain

ξ(k) = ξex(k) + ξmin, (38)

where
ξmin =

1

2L2
E [VH(k)V(k)] = E [v2(n)] (39)

is the minimum MSE, and

ξex(k) =
1

2L2
E [W̃H(k)XH(k)G01X(k)W̃(k)]

=
1

2L2
tr
{
vec−1[z(k)]E [B(k)]

} (40)

is the excess MSE (EMSE) introduced by perturbation of
the estimated weight vector with B(k) = XH(k)G01X(k).
Once the moment matrices are determined, the MSD and MSE
learning curves of PBFDAFs can be accurately described by
(30), (35) and (40).

The advantages of our theoretical analysis lie in three
aspects. First, we do not assume the specific statistics of the
input signals, i.e., the proposed theoretical model does not
restrict the input data to being Gaussian or white. The required
moment matrices can be evaluated under the knowledge of the
input statistics in closed form [36], [37] or by the numerical
method [6]. Second, we do not use any approximations on
the moment matrices. Third, the correlations between different
sub-filters are considered. The latter two aspects make our
analysis model more accurate than the previous ones.
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(a) Constrained version
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(b) Unconstrained version

Fig. 1. Mean weight error vector behavior of E[W̃0,2(k)]. (a) Constrained
PBFDAF. (b) Unconstrained PBFDAF.

IV. SIMULATION RESULTS

Computer simulations are carried out to verify the theoret-
ical results. The lengths of the adaptive filter and each sub-
filter are N = 48 and L = 16, respectively. The coefficients of
the unknown system is generated by a zero-mean white noise
sequence with ‖w‖ = 1. The input signal is an AR(1) process
that is generated by filtering the uniformly distributed signal
through the transfer function H(z) = 1/(1− 0.9z−1). White
Gaussian noise is added to the desired signal. The signal-to-
noise ratio (SNR) is 30 dB, and the step size is μ = 0.2. The
moment matrices are estimated via ensemble averaging. The
adaptive weight vectors Ŵp(0) are initialized as a zero vector.
The experimental results are averaged over 100 independent
trials.

Fig. 1 investigates the mean weight-error behavior of the
PBFDAFs, where Fig. 1(a) and Fig. 1(b) correspond to the
constrained and unconstrained versions, respectively. For pre-
sentation clarity, we only show the behaviors of the real and
imaginary parts of the third coefficient of the first subfilter
E [W̃0,2(k)]. The theoretical predictions are in good agreement
with the experiment results. We found that the mean weight
vector of the constrained PBFDAF can converge to the true
solution, while that of the unconstrained version cannot. For
the unconstrained PBFDAF, the special overlap structure of
xp(k) leads to the rank loss of the matrix E [A(k)], and
hence the steady-state mean weight vector cannot converge
to the optimal solution. That is, the bias is introduced by the
control matrix E [A(k)] but not the initialization of the weight
vector. It was stated in [33] that the mean weight behavior
of the unconstrained PBFDAF ‘appears as a kind of random
walk stochastic process.’ However, both the presented theory
and experiment clearly indicate the mean weight curve of
the unconstrained PBFDAF is deterministic but not stochastic
once the initialized values are determined.
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Fig. 2. Transient behaviors of constrained and unconstrained PBFDAFs. (a)
MSD. (b) EMSE.

Fig. 2 depicts the analytical and experimental results for
the mean-square performance of PBFDAFs. Our predicted
MSD and EMSE learning curves are calculated using (35)
and (40), respectively. The theoretical results in [32] are also
involved for the performance comparison. It can be seen
that our theoretical results coincide very closely with the
experimental ones, while the theoretical curves from [32]
considerably deviate from the experimental results especially
during the transient phase. It is also observed that the steady-
state MSD of the unconstrained PBFDAF is much higher than
that of the constrained version, which is mainly because the
mean weight vector of the unconstrained PBFDAF with 50%
overlap cannot converge to the true solution. This indicates
that the unconstrained PBFDAF is not suitable for the system
identification application in which the exact system impulse
response is required.

V. CONCLUSIONS

This paper presented an accurate transient analysis of a fam-
ily of the overlap-save PBFDAF, including the mean weight
error and the mean-square convergence behaviors. We did not
assume the specific probability density function of the input
signal. The proposed analytical models are well consistent
with the experiment results. This paper revealed some new
properties of PBFDAFs with 50% overlap, e.g., the mean
weight vector of the constrained PBFDAF converges to the
true solution, while that of the unconstrained version converges
to a biased solution, leading to a larger misalignment. This is
quite different from the FDAF algorithms, which converge to
the optimal solution for both the constrained and unconstrained
versions. The theoretical results could also be utilized to derive
the step-size bound for the mean and mean-square stability,
which is left as our future work.
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