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ABSTRACT

This work develops a variation of diffusion learning by
incorporating an adaptive construction for the combination
weights through local fusion steps. This leads to an imple-
mentation with enhanced convergence rate and mean-square-
error performance while maintaining the same level of com-
plexity as standard implementations. The approach is based
on formulating optimal or close-to-optimal learning and fu-
sion steps using a proximity function rationale within neigh-
borhoods. The first version of the algorithm employs exact
fusion in the least-squares sense using inverses of uncertainty
matrices. The second version replaces these matrices by diag-
onal approximations with reduced complexity. The result is
an LMS-complexity scheme with improved performance for
distributed learning over networks.

Index Terms— diffusion networks, fusion, least-squares,
adaptation, combination weights.

1. INTRODUCTION

In typical implementations of consensus and diffusion strate-
gies for learning over networks, it is customary to combine
estimates from neighborhoods by relying on convex combi-
nation weights [1]–[6]. In general, these weights are fixed and
chosen as (scalar) entries of left-stochastic combination matri-
ces. There have been works in the literature where the combi-
nation weights have also been learned as part of the adaptation
process. For example, the relative variance combination rule
from [7] was derived by optimizing the instantaneous mean-
square-error measure as the learning algorithm evolves over
time.

In this work, we take a different route to learning the com-
bination weights, leading to enhanced performance. We at-
tain this objective by formulating optimal or close-to-optimal
fusion steps locally under a proximity rationale, and subse-
quently reduce the complexity of the iterations by replacing
uncertainty matrices by scalar approximations. The main dif-
ference between our derivation and existing approaches is that
uncertainties in the estimates by the agents are carried from
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self-learning to the social learning phase, and back to self-
learning again, in a continuous fashion. This results in adap-
tive combination weights and lead to lower mean-square-error
and faster convergence compared to existing approaches.

2. DIFFUSION ALGORITHMS REVISITED

We consider a strongly-connected network of distributed
agents, represented by a collection ofN nodes in Fig. 1. Each
agent k receives streaming data tdkpiq,uk,iu, assumed to be
related via a linear regression model of the form

dkpiq “ uk,iw
o
k ` vkpiq (1)

where i is the time index, wo
k is an unknown local parame-

ter of size M ˆ 1, uk,i is a regression (row) vector of size
1ˆM , and vkpiq is additive zero-mean white noise, which is
temporally and spatially uncorrelated with other data.

Fig. 1. Illustration of a network with N“34 agents.

We collect the data measured at each agent k up to time i
into the quantities:

Hk,i “ coltuk,1,uk,2, . . . ,uk,iu (2)

yk,i “ coltdkp1q, dkp2q, . . . , dkpiqu (3)

In a non-cooperative setting, each agent k would estimate
its parameter vector wo

k by solving a weighted least-squares
problem of the form:

min
wk

}yk,i ´Hk,iwk}
2

Λ k,i
(4)

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



for some weighting matrix Λk,i “ diagtλi´1, . . . , λ, 1u
where 0 ! λ ď 1 is an exponential weighting factor. In
many important situations, however, the individual models
two

ku are related, such as varying smoothly over a graph.
In these cases, it is reasonable to encourage agents to seek
estimates that are close to each other. One way to achieve this
objective is to replace problem (4) by a regularized problem
that enforces coupling among agents. To exploit this idea, let
bdiagp¨q denote a block diagonal operator and introduce the
following extended quantities :

W
o “ col two

1
,wo

2
, . . . ,wo

Nu (5)

yi “ col ty
1,i,y2,i, . . . ,yN,iu (6)

vi “ col tv1,i,v2,i, . . . ,vN,iu (7)

Hi “ bdiag tH1,i,H2,i, . . . ,HN,iu (8)

Λi “ p1{Nqbdiag tΛ1,i, . . . ,ΛN,iu (9)

Definitions (5)-(9) allow us to write a global linear model for
the data collected across the network up to time i as follows:

yi “ HiW
o ` vi (10)

Introduce the extended parameter vector:

W “ col tw1,w2, . . . ,wNu (11)

Now, one way to enforce coupling is via a proximity func-
tion. This is usually achieved by considering the following
regularized cost

min
W

}yi ´HiW}
2

Λi
` ρipWq (12)

for some regularizer ρipWq whose purpose is to encourage
proximity to W

o. However, since W
o is unknown, we shall

instead encourage proximity with respect to the best guess
available at that moment. We will explain how to obtain this
estimate in the sequel. For now, let us denote its entries by
wk,i at agent k; i.e., this is the estimate for wo

k at agent k at
time i. We shall also explain how to associate with this es-
timate a local uncertainty matrix denoted by P k,i: the better
the quality of wk,i, the smaller P k,i will be so that the in-

verse matrix P
´1

k,i serves as a measure of the uncertainty in
the estimate wk,i.

Using these intermediate estimates (to be constructed
later), we replace the cost in (12) by one of the form

JipWq “ }yi ´HiW}
2

Λi
`

iÿ

m“1

λi´m}W ´Wm}
2

P
´1

m

(13)

where Wm “ col tw1,m,w2,m, . . . ,wN,mu, and

P
´1

m “ bdiag
!
P
´1

1,m , P
´1

2,m , ¨ ¨ ¨ , P
´1

N,m

)
(14)

One possible choice forwk,i iswk,i´1, the estimate obtained
at time i ´ 1. Observe that (13) pushes W towards the es-
timates Wm by computing an exponentially weighted error

measure from time m “ 1 up to time m “ i. Since this ob-
jective function is quadratic, it can be expressed in terms of
its minimizer and Hessian matrix as

JipWq “ }W ´Wi}
2

P
´1

i
` c (15)

for some constant c, which can be ignored, and where

Wi “ argmin
W

}W ´Wi}
2

P
´1

i
(16)

P´1

i “ ∇
2JpWq “H

˚
i ΛiHi `

iÿ

m“1

λi´mP
´1

m (17)

with ˚ denoting complex conjugate transposition. Of course,
this reformulation is not useful in finding the minimizer
of (13) since it involves Wi itself. It does however allow us
to obtain a recursive algorithm for the solution. To see this,
let tdi,U iu contain the most recent data at time i:

di “ col td1piq, d2piq, . . . , dN piqu (18)

U i “ bdiag tu1,i,u2,i, . . . ,uN,iu (19)

Then, (13) can be expressed as

JipWq “ }di ´ U iW}
2 `

››yi´1
´Hi´1W

››2
λΛi´1

`λ

i´1ÿ

m“1

λi´m´1}W ´Wm}
2

P
´1

m

` }W ´Wi}
2

P
´1

i

“ }di ´ U iW}
2 ` λ }W ´Wi´1}

2

P
´1

i´1looooooooomooooooooon
Ji´1pWq

` }W ´Wi}
2

P
´1

i

(20)
Note that JipWq is composed of three components. The first
term, }di ´ U iW}

2, fitsW to the most recent data; the second
term, λ }W ´Wi´1}

2

P
´1

i´1

, incorporates past information; and

the last term }W ´Wi}
2

P
´1

i

promotes smoothness and close-

ness to the intermediate estimate Wi yet to be specified.
Using completion of squares in (20), we can combine the

first two terms and write the minimization problem as:

min
W

››W ´ pWi

››2pP´1

i

` }W ´Wi}
2

P
´1

i

(21)

in terms of the updated local estimates:

pWi “ Wi´1 ` pPiU
˚
i pdi ´ U iWi´1q (22)

pP´1

i “ λP´1

i´1
` U

˚
i U i (23)

where pWi “ col tpw1,i, pw2,i, . . . , pwN,iu, and

pP´1

i´1
“ bdiag

!
pP 1,i´1, pP 2,i´1, . . . , pPN,i´1

)
(24)

We are now left to define twk,i,P
´1

k,iu. While pwk,i, is an
improved estimate for wo

k over wk,i´1, since it includes the
most recent data, we proceed one step further by allowing for
an exchange of information within neighborhoods. This can
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be obtained by designing Wi as a fusion in the neighborhood
Nk of the agent’s estimates tpwk,i, pP k,iu, defined in (22) and
(23), in a weighted least-squares manner, however, without
including agent k. This is because the contribution of agent
k will be added by the first term of (21). Now, since (21) is
equivalent to minimizing (15), instead of designing Wi, we
can design the result of their fusion, say, tWi,Piu, directly as
the solution to

min
w1

k

Nÿ

ℓPNk

akℓ}w
1
k ´ pwℓ,i}

2

pP ´1

ℓ,i

(25)

“ min
w1

k

››w1k ´w1k,i
››2
P

1´1

k,i

, k “ 1, 2, . . . , N (26)

“ min
W1

››W1 ´W
1
i

››2
P

1´1

i

(27)

for positive scalars takℓu. The solution to (25) is given by

w1k,i “
ÿ

ℓPNk

Akℓ,i pwℓ,i , Akℓ,i
∆
“ akℓP

1
k,i

pP´1

ℓ,i (28)

if ℓ P Nk, while Akℓ,i “ 0 if ℓ R Nk. The quantity P
1´1

k,i is
the uncertainty that results from theses estimates,

P
1´1

k,i “
ÿ

ℓPNk

akℓ pP´1

ℓ,i (29)

Hence, in extended vector form, this yields tW1
i,P

1
iu.

Now, observe that if we select Wi “ W
1
i and Pi “ P 1

i, the
costs (27) and (15) will have the same form. In other words,
by selecting (27) and (15) to have the same minimizer with
the same uncertainty, we are able to propagate these quantities
from self-learning to social learning in a true recursion.

Note that while we could assume for simplicity that all
agents in Nk are equally important in the fusion process, say,
akℓ “ γk ě 0, node k itself can be assigned a different weight
akk, relative to its neighbors, implying that it can have more
or less certainty of its own estimate. In order for these coeffi-
cients to add up to one, we select

akk “ 1´ γkpnk ´ 1q (30)

where nk is the degree of the neighborhood. Moreover, by
associating the scalars akℓ to entries of a N ˆ N matrix A,
thenA is referred to a Laplacian matrix.

Finally, defining A “ A b IM , where b denotes the
Kronecker product, then, in extended matrix notation, it holds
that

Wi “ Ai pWi (31)

where, using (24),

Ai “ PiApP´1

i , P
´1

i “ bdiag
”
ApP´1

i p b IM q
ı
(32)

It is easily verified that Ai “ p b IM q is block right-
stochastic by construction. The diffusion recursions derived

so far are listed in Table 1, and constitute what we shall re-
fer to as the Adapt-and-Fuse (AAF) diffusion, which extends
the usual description of diffusion strategy known as Adapt-

then-Combine (ATC), where Ai“A. Figure 2 illustrates the
equivalent global transmission scheme, where we have de-
fined Gi “ pPiU

˚
i .

�����������������������������������������������������

Initialization: w0 “ 0 , P
´1

0
“ ǫI for small ǫ

——————————————————————-

pP´1

i “ λP
´1

i´1
` U

˚

i Ui

P
´1

i “ bdiag
”
ApP´1

i p b IM q
ı

Ai “PiApP´1

i

xWi “ Wi´1 ` pPiU
˚

i
pdi ´ UiWi´1q

Wi “ AixWi

——————-
Table 1. AAF Diffusion Adaptation.

Fig. 2. Global Description of the AAF scheme.

3. SIMPLIFIED AAF RECURSIONS

Because the optimal coefficients ofAi and all its defining co-
variances w.r.t. node k are complex and matrix-valued, they
require complex matrix ˆ matrix operations and inversions
at each time i. These computations can be cumbersome con-
sidering that agents should perform elementary operations
when fusing their estimates within Nk. By assuming uncor-
related input regressors, we can simplify the AAF recursions
by restricting the covariances to diagonal matrices, i.e., we
set P k,i « σ2

kpiqI , and pP k,i « pσ2

ℓ piqI . With these approx-
imations, the N ˆ N block entry of Ai in (32) simplifies
to

rAiskℓ “ akℓpiqI “ akℓσ
2

kpiqpσ´2

ℓ piqI

The resulting algorithm is shown in Table 2, which we re-
fer to as the Simplified-AAF (SAAF) algorithm.

�������������������������������������������������������������������

Initialization: wℓ,0 “ 0 , σ
´2

k
p0q “ ǫ for small ǫ

————————————————————————————-
for k “ 1 to N :

pσ´2

k
piq “ λσ

´2

k
pi´ 1q ` |uℓpiq|

2

σ
´2

k
piq “

ř
ℓPNk

akℓpσ´2

ℓk
piq

aℓkpiq “ akℓσ
2

kpiqpσ´2

ℓ
piq

pwk,i “ wk,i´1 ` pσ2

kpiqu
˚

k,i
rdkpiq ´ uk,iwk,i´1s

wk,i “
ř

ℓPNk

aℓkpiq pwℓ,i

————————
Table 2. SAAF Algorithm.

Note that the computational complexity for updating the
combination matrix in the SAAF recursions is of OpNMq.
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This is in contrast to the relative-variance rule of [7] which
requires OpNNMq computations per iteration in order to ac-
complish a similar task, where N “

řN

k“1
Nk. That is, the

uncertainties of each node in [7] are assumed to vary over
the neighborhoods, while in the proposed construction, the
nodes uncertainties are absolute; they are updated indepen-
dently, and combined through the fixed Laplacian matrixA.

4. SIMULATIONS

In order to illustrate the performance of the proposed AAF
based algorithms in comparison with existing cooperative-
based schemes, we consider a topology with N “ 20 agents
with unknown vectors of size M “ 10, and compare: piq the
power normalized LMS-based algorithms employing a fixed
combination policy; piiq a normalized LMS version of the
adaptive relative variance diffusion algorithm of [7], and
piiiq the RLS-based diffusion of, e.g., [11].

In order to set one possible theoretical benchmark for
comparison on the minimum mean-square-deviation (MSD),
we consider the one corresponding to the well established
diffusion LMS algorithm. The network MSD in this case, for
sufficiently small µ is given by (see [8], pp. 606)

MSDdist,av “
M

2

˜
Nÿ

k“1

µ2

kp
2

kσ
2

u,kpσ
2

v,k ` σ2

u,k}w
o´wo

k}
2q

¸

¨

˜
Nÿ

k“1

µkpkσ
2

u,k

¸´1

(33)

in terms of the input and noise variances, σ2

u,k and σ2

v,k re-
spectively, and the entries pk of the Perron vector associ-
ated to the combination matrix, here chosen as the optimal
relative-variance rule (for the cases when wo

k “ wo). This is
illustrated by a thick straight line.

� Scenario 1 (Performance of the SAAF algorithm) : Figure
3 shows typical ensemble average learning curves for uncor-
related inputs. We set the step-size as µ “ 0.002 for the
LMS-based algorithms, λ “ 1 for the RLS algorithms, and
γk “ 0.0024 in (30) for the proposed recursions.

We see that the proposed simplified algorithm outper-
forms LMS-based algorithms, and with reduced complexity
compared to the relative-variance policy. We clearly see a dif-
ference in terms of the MSD attained. Moreover, it exhibits
approximately the same performance of existing RLS-based
recursions. It is worth noting that for the latter, the use of a
Metropolis combination rule C does not yield improvement
against the case when C “ I .

� Scenario 2 (Performance of the full AAF algorithm for

colored input and λă 1 for all RLS algorithms) : Figure 4
shows the curves for the RLS algorithms when λ “ 0.99, and
for a slightly colored AR process, with pole at 0.5.
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Fig. 3. Comparison among algorithms, uncorrelated input.

We verify that existing diffusion RLS algorithms have
their performance degraded. The exact AAF-RLS, despite
the computational complexity, outperforms in speed andMSE
level, which continues to decrease beyond 8 ¨ 104 iterations.
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Fig. 4. AAF performance with colored input and for λ ă 1.

5. CONCLUSIONS

We have proposed a construction for optimized diffusion net-
works which fuses estimates and uncertainties at every node
in the LS sense. The proposed AAF recursions outperform
existing diffusion algorithms, especially when λ ă 1, and
for colored inputs. For uncorrelated data, we verified that its
simplified version outperforms all other algorithms, and ex-
hibiting the same convergence performance of existing RLS
diffusion schemes, however, under LMS complexity.
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