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Abstract—A novel spectrum sensing algorithm based on sup-
port vector machine is proposed. The idea is to map the received
signals into a multi-dimensional feature space obtained from
well-known spectrum sensing statistics and their higher-order
combinations. The approach has been implemented and validated
on a software-defined radio testbed. Experimental results have
shown the receiver operating characteristic (ROC) curve of the
proposed detector can outperform classical spectrum sensing
approaches without requiring knowledge of the noise variance.

Index Terms—spectrum sensing, support vector machine, de-
tection, software-defined radio

I. INTRODUCTION

There is an increasing demand for higher data rates in
wireless communications, which however is more and more
problematic to meet due to the scarcity of the spectrum.
Traditionally, licensed spectrum is allocated over relatively
long time periods and is intended to be used only by licensees.
There is evidence today that spectral resources are underuti-
lized in certain portions or “spectrum holes”; this is fostering
the development of cognitive radio (CR) technologies [1], in
order to reuse unused spectrum in an opportunistic manner.

Cognitive radio systems typically involve (licensee) primary
users (PU), and secondary users (SU) who seek to opportunis-
tically use the spectrum when the primary users are idle. The
impact on the primary system (interference) must be kept at
a minimal level, thus an effective spectrum sensing algorithm
is of fundamental importance to decide whether a particular
slice of the spectrum is available or not.

Spectrum sensing is also of great interest in passive radios,
which have enormous applications in security and defense. In
particular, localization of a non-cooperative target is preferably
carried out in stealth mode, i.e., using only passive technolo-
gies instead of active ones such as conventional radar systems.
A wireless sensor network (WSN) can be used to this aim,
equipped with a passive radio which listens over a particular
frequency and tries to detect a transmission.1

Classical approaches to the problem of spectrum sensing
typically try to exploit the statistical properties of the received
signal: signal processing tools are used to estimate specific

1As a practical example, the project “SafeShore” (http://safeshore.eu) [2]
is aimed at detecting small targets such as drones (which can potentially carry
explosives or can be used for smuggling); for this task, passive radio is used
to detect the control signal from a remotely-piloted drone, which in turn is
useful to “filter out” false alarms due e.g. to birds, indistinguishable through
other complementary detection technologies such as LIDAR [3].

characteristics, captured by e.g. the autocorrelation function
or eigenvalue distribution, that can spotlight the presence of a
structured signal representative of the PU transmission. To this
aim, the analog signal is sampled and converted to the digital
domain for processing, and novel techniques are available
today for making such a process parsimonious (i.e., using a
reduced number of samples compared to the standard Nyquist-
rate prescription, see e.g. [4], [5]). At the same time, several
machine learning approaches have been recently attempted
to improve the detection capabilities of spectrum sensing, in
particular adopting k-means, support vector machines (SVM),
k-nearest neighbors (KNN), and other techniques [6]–[12].
Such approaches use as feature vector different quantities
extracted from the samples: energy levels [7], eigenvalues or
their ratios [8], [11], and other heuristic features obtained from
ad-hoc signal statistics [9].

In this work, a novel spectrum sensing approach is proposed.
It is based on SVM and it does not require to know the
statistics of the noise, which is one of the main limitation
of classical spectrum sensing based on energy detection. The
idea is to nonlinearly map the received signals into a multi-
dimensional feature space obtained from well-known spectrum
sensing statistics and their higher-order combinations; then,
SVM is adopted to perform binary classification through a
hyperplane that ideally separates the data in such a space
according to the hypothesis actually in force. SVM has several
advantages including best linear separation of two clusters, po-
tential to overcome the curse of dimensionality using kernels,
and low-complexity [9]. The proposed approach of extending
the feature vector through higher-order combinations of its
components can be justified on the basis of Cover’s theorem on
the separability of patterns [13], which states that a classifica-
tion problem, cast in a high-dimensional space nonlinearly, is
more likely to be linearly separable than in a low-dimensional
space [14], [15]. More specifically, we consider up to third-
order combinations of three well-known spectrum sensing
decision statistics, based on energy levels and eigenvalues.

The experiments carried out via a software-defined receiver
reveal that the proposed approach is more effective than
classical spectrum sensing techniques to detect (also weak)
signals, without requiring knowledge of the noise power.
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II. SPECTRUM SENSING TECHNIQUES

A. Problem formulation

The presence or absence of a PU signal can be regarded
as a binary hypothesis testing problem. Denote by s(t) the
complex envelope of the (zero-mean) signal that comes from
a primary TX and received at the RX. H1 and H0 correspond
to the presence/absence of such a signal, respectively; thus,
the complex envelope of the received signal is modeled as

y(t) =

{
w(t) H0

s(t) + w(t) H1

(1)

where w(t) denotes the thermal (white) Gaussian noise. Ac-
cording to the level of information about the primary signal,
different kinds of detection schemes can be used for spectrum
sensing. When the received signal is known, the matched filter
can be used for spectrum sensing, which is the optimal detector
for an AWGN environment. The main advantage of matched
filter detection is the short sensing time to achieve a good
performance, because signal coherence is exploited. When the
signals are unknown, other techniques should be used. Three
different algorithms, in particular Covariance Matrix-Based
Detector [16], [17], Maximum-Minimum Eigenvalue Detector
[18]–[21] and Energy Detector [20], [22] are considered in
this work; these approaches have different requirements and
advantages/disadvantages.

We first introduce the discrete model for the received signal.
The sampled received signal with a certain sampling frequency
fs and sampling period T = 1/fs will be

y(nT ) =

{
w(nT ) H0

s(nT ) + w(nT ) H1

.

To ease the notation, we use the shorthands y(n) = y(nT ),
s(n) = s(nT ), and w(n) = w(nT ). The signals can be thus
represented by vectors, i.e.,

y = [y(1) y(2) · · · y(Ns)]
>

s = [s(1) s(2) · · · s(Ns)]
>

w = [w(1) w(2) · · · w(Ns)]
>

(2)

where > denotes transposition and Ns is the number of
samples. The problem finally becomes

y =

{
w H0

s+w H1

. (3)

B. Energy Detector

Energy detection is a major and basic method. Unlike other
methods, energy detection does not need any information
about the signal to be detected since it uses only the energy E
as detection statistics. However, energy detection is extremely
sensitive to noise power uncertainty, because the method relies
on the accurate knowledge of the noise power [20], which is
difficult to obtain in practice since it depends on many factors
including temperature, environment, and frequency.

C. Covariance Matrix-Based Detection

To overcome the limitation of the energy detector, a Co-
variance Matrix-Based Detector [16], [17] has been proposed,
which does not require knowledge of σ2. Let us assume
that w(k) is a stationary process satisfying E[w(k)] = 0,
E[w(k)w∗(h)] = σ2

wδkh, where ∗ denotes complex conjugate,
δkh is the Kronecker symbol (1 if k = h and 0 otherwise), and
E[·] is the statistical mean (expectation). Considering only L
of the Ns consecutive samples, i.e.,

y(n) = [y(n) y(n+ 1) · · · y(n+ L− 1)]>

s(n) = [s(n) s(n+ 1) · · · s(n+ L− 1)]>

w(n) = [w(n) w(n+ 1) · · · w(n+ L− 1)]>
(4)

(L is also called smoothing factor), the statistical covariance
matrices of the signal and noise are given by

Ry = E
[
[y(n)− E[y(n)]] [y(n)− E[y(n)]]

H
]

(5)

Rs = E
[
[s(n)− E[s(n)]] [s(n)− E[s(n)]]

H
]

(6)

where H denotes conjugate transposition (Hermitian), and

Ry = Rs + σ2
wIL (7)

under H1, with IL ∈ RL×L the identity matrix of size L.
If the signal s(n) is not present, Rs = 0; hence, the off-

diagonal elements of Ry are (ideally) zeros. If there is a signal
and the samples are correlated (as usually happens in real
signals), Ry is not a diagonal matrix; hence some of the off-
diagonal elements of Ry should be nonzeros. Denote as rij
the element of Ry at the ith row and jth column, and let

T1 =
1

L

L∑
i=1

L∑
j=1

|rij |, T2 =
1

L

L∑
i=1

|rii|. (8)

From the discussion above, it follows that if there is no signal
T1/T2 = 1, while if there is a signal T1/T2 > 1. Thus,
the T1/T2 ratio can be used to detect the presence of the
signal. In practice, the statistical covariance matrix can only
be calculated using a limited number of signal samples.

In this paper, we use the following estimator

R̂y =


λ(0) λ(1) · · · λ(L− 1)
λ∗(1) λ(0) · · · λ(L− 2)

...
...

. . .
...

λ∗(L− 1) λ∗(L− 2) · · · λ(0)

 (9)

where

λ(l) =
1

Ns

Ns−l∑
m=1

(y(m)− y) (y(m+ l)− y)∗ (10)

is the sample autocovariance of the received signal as defined
in [23] with y = 1

Ns

∑Ns

m=1 y(m) its sample mean.2 The final
decision statistic is given by (8) in which the estimate (9) is
used in place of Ry .

2We have omitted normalization since it cancels out in the ratio statistics.
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D. Maximum-Minimum Eigenvalue Detector

This algorithm is based on the same considerations done for
the covariance matrix-based detector. It consists in evaluating
the ratio between the maximum and minimum eigenvalues and
compare it to a threshold [18]–[21].

The rationale for such a procedure is that, by looking at eq.
(7), the covariance matrix under the two hypotheses is

Ry =

{
σ2
wIL H0

Rs + σ2
wIL H1

(11)

hence the maximum and minimum eigenvalues are given by

(λmax, λmin) =

{
(σ2

w, σ
2
w) H0

(ρmax + σ2
w, ρmin + σ2

w) H1

(12)

where ρmax and ρmin are the maximum and minimum eigen-
values of Rs, respectively. Then, the ratio λmax/λmin, which
in fact coincides with the condition number of the matrix Ry ,
should be 1 under H0 and larger than 1 under H1.

Again, in practice, the statistical covariance matrix (hence
its eigenvalues) can only be estimated using a limited number
of signal samples. In this paper we adopt (9) as estimator also
for the maximum-minimum eigenvalue detector.

E. Discussion

In principle, the energy detector should be able to detect
a weak signal since it assumes a perfect “knowledge” of the
environment, i.e., the noise power level σ2

w. However, having
such a knowledge is difficult in real scenarios, since it may
vary according to different parameters such as temperature,
quality of the electronics, and frequency. Approaches such
as the maximum-minimum eigenvalue and covariance matrix-
based detection appear more interesting since they do not
require any a priori knowledge. However, although they offer
good performance in case of strong signals, such methods may
not be able to deal with weak sources.3

In this work, we tackle the issues of the different thresholds
and noise uncertainty present in these algorithms and design a
novel method to detect the absence or presence of signals. As
we will see in the next section, we propose the adoption of a
machine learning technique (SVM) to create a better detector
that does not require knowledge of the noise power, and is
able to detect also weak signals.

III. SVM-BASED SPECTRUM SENSING: DESIGN

SVM, proposed by Vapnik in 1995 [24], is a supervised
learning model with associated learning algorithms for clas-
sification. It provides a representation of the training sample

3In addition to their own limitations, most detectors cannot detect a weak
signal due to uncertainty on the noise process. In particular, the formulas
available in the literature to compute the threshold that guarantees a nominal
probability of false alarm, are often available only for white Gaussian noise;
unfortunately, in many cases signals are filtered, hence the filtered noise
could be not “white” anymore, and more in general non-linearities change the
statistical distribution of the noise process. Whitening operations are proposed
in [17] and [19], but this further complication is anyway not able to make the
noise perfectly white and Gaussian in real experiments.

as points in a space, mapped so that data are separated into
a number of categories (classes). New data are classified
according to which region of the space they fall in. Given
a training set T = {(x1, y1), (x2, y2), · · · , (xM , yM )}, where
xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, . . . ,M , the problem
can be formalized as finding a real function g(x) in Rn such
that the decision function f(x) = sgn(g(x)) will be able to
predict the value of y for any x, with sgn( ·) denoting the sign
function [25]. Thus, solving a binary classification problem is
equivalent to finding a criterion in order to separate the Rn

space into two regions based on the training set T . When
g(x) is restricted to be a linear function g(x) = w>x+ b, the
corresponding method is referred to as a linear classification
machine, with the hyperplane w>x + b = 0 separating Rn

into two regions.
In this work SVM is applied to spectrum sensing, based

on a particular vector of signal features. These features could
be chosen in many different ways; the idea is to choose as
feature vector the statistics of the different spectrum sensing
algorithms discussed above, i.e.

x = [x1 x2 x3]
> =

[
λmax

λmin

T1
T2

E

]>
(13)

and their higher-order combinations, with the aim to promote
stronger separability between the H0 and H1 regions; as
mentioned in Sec. I, this approach can be justified on the basis
of Cover’s theorem on the separability of patterns [13]–[15].
In particular, we consider the feature vector extended up to
the second order, i.e.,

x = [x1 · · · x9]>

=

[
λmax

λmin

T1
T2

E

λ2max

λ2min

T 2
1

T 2
2

E2 λmax

λmin

T1
T2

λmax

λmin
E

T1
T2
E

]>
as well as to the third order, i.e.,

x =[x1 · · · x19]>

=

[
λmax

λmin

T1
T2

E

λ2max

λ2min

T 2
1

T 2
2

E2 λmax

λmin

T1
T2

λmax

λmin
E

T1
T2
E

λ2max

λ2min

T1
T2

λ2max

λ2min

E
λmax

λmin

T 2
1

T 2
2

T 2
1

T 2
2

E
λmax

λmin
E2

T1
T2
E2 λmax

λmin

T1
T2
E

λ3max

λ3min

T 3
1

T 3
2

E3

]>
.

We need to discuss a final aspect. In classical detection
theory, probability of false alarm (PFA) is a design parameter
set according to a maximum tolerable level; then, the design
goal is typically to maximize the probability of detection (PD).
In the proposed SVM-based approach, once the features vector
x is computed for a given training set T , the optimal param-
eters w∗ and b∗ uniquely identify the separation hyperplane
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Figure 1. Experimental testbed with one RTL-SDR and one HackRF One
connected to a Linux personal computer.

w∗>x+ b∗ = 0 used for classifying new data. Consequently,
PD and PFA are determined only on the basis of the specific
training set T , hence cannot be easily tuned. To tackle this
issue, we propose to consider the parallel sheaf of hyperplanes
with respect to the optimal hyperplane, parametrized in d:

Shifted hyperplane: g(x) = w∗>x+ b∗ + d. (14)

By using this heuristic, we expect that moving the hyperplane
towards the H1 region (far away from the origin), PD and
PFA will decrease simultaneously — of course not necessarily
at the same pace — while moving it towards the H0 region
(close to the origin) PD and PFA will increase simultaneously.
Clearly, a trade-off must be considered.

IV. EXPERIMENTAL TESTBED AND RESULTS

A. Experimental Testbed

The proposed SVM-based detector has been implemented
in MATLAB and tested on real data acquired by RTL-
SDR, a low cost (sub-20$) and easy-to-use USB device that
receives RF radio signals in the range from 25 MHz to 1.75
GHz [26]. Originally, these devices were designed as DVB-T
(Digital Video Broadcast-Terrestrial) receivers, but then it was
discovered that they could be used as generic (receive only)
SDRs by simply putting them into a different mode. The front
end of the RTL-SDR receives RF signals, downconverts them
to baseband, digitizes them, and finally outputs the samples of
the baseband signal across its USB interface. The RTL-SDR
can be interfaced with MATLAB & Simulink through specific
support packages and libraries [26].

The acquisition has been performed in an observation time
of to = 1 s with a sampling frequency fs = 240 kHz, at a
given frequency f0. The resulting Ns = 240 ksamples, which
represent the radiofrequency signal filtered in a bandwidth of
±120 kHz around f0, are stored in the vector form of (2).
The first 4096 samples of each signal acquisition are discarded
since they are the initial samples for setting up the RTL-SDR.

Figure 2. SVM training in 3D features space representation: red circles are
data under H0, while blue crosses are data under H1; the learned hyperplane
is shown in grey color.

Under H1 hypothesis, some signal has been transmitted using
another SDR, called HackRF One [27], [28], interfaced with
GNU Radio in Linux Xubuntu 16.10. The testbed is in Fig. 1.

B. Results

For the performance assessment we consider a training
based on signals over different frequencies of the RTL-SDR. In
particular, for the H0 training set, acquisitions at the following
frequencies have been performed in absence of detectable
transmissions: 902 MHz (GSM), 433.9 MHz (remote control
and key fobs), 569 MHz (TV broadcast UHF), 50 MHz (land
mobile), 1500 MHz (amateur/land mobile) and 857 MHz (4G
Uplink frequency). For the H1 training set, conversely, the
following frequencies have been used: 857 MHz (4G Uplink
frequency), 816 MHz (4G Downlink frequency), 92.3 MHz
(FM broadcast radio), 569 MHz with various transmission
powers (FM signal transmitted with HackRF One), and 902
MHz (GSM frequency). The results are shown in Fig. 2.

The performance are evaluated by computing the receiver
operating characteristics (ROC) curves, considering of course
H0 and H1 signals not used for the SVM training. Several
experiments have been conducted. Here we show one repre-
sentative case: a signal at f0 = 902 MHz for H0 with no
transmission and a signal at f0 = 569 MHz for H1 in which
the transmitter has an attenuation factor so as to produce a
weak signal. For evaluation purposes, to obtain the different
combinations of PD and PFA, we adopt the heuristic in (14).

Fig. 3 shows the comparison between the proposed SVM-
based approach and the three detectors presented in Sec.
II. Remarkably, the obtained performance is better than the
covariance-based detectors and almost attains the energy de-
tector, without however requiring knowledge of the noise
power; notice that, to obtain an estimate of the latter, the
training data were used hence the threshold corresponds to the
nominal PFA. Fig. 3 also shows the comparison between the
extended and the classical SVM-based approaches4. It is worth
noticing that the extended SVM-based approach outperforms

4We cannot represent the feature space since it is not possible to visualize
more than three dimensions.
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Figure 3. ROC curves comparison between the proposed SVM-based ap-
proaches and state-of-the-art competitors.

the energy detector, which additionally exploits knowledge
of the noise power level. As a whole, SVM-based detectors
can guarantee better performance without requiring such an
information. Results for other frequencies are not shown since
they are similar to the reported one, which as said represents
a case of weak signal.

V. CONCLUSION

We have addressed the design of a novel spectrum sensing
scheme based on SVM with feature space obtained from well-
known spectrum sensing statistics and their higher-order com-
binations. Using this algorithm, the presence of a transmission
over a certain frequency can be accurately detected without
knowledge of the noise power. The proposed algorithm has
been evaluated in real experiments through a software-defined
radio testbed, showing that it can outperform classical spec-
trum sensing approaches also for weak signals.
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