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Abstract—The tensor train decomposition (TTD) has become
an attractive decomposition approach due to its ease of inference
by use of the singular value decomposition and flexible yet
compact representations enabling efficient computations and
reduced memory usage using the TTD representation for further
analyses. Unfortunately, the level of complexity to use and the
order in which modes should be decomposed using the TTD is
unclear. We advance TTD to a fully probabilistic TTD (PTTD)
using variational Bayesian inference to account for parameter
uncertainty and noise. In particular, we exploit that the PTTD
enables model comparisons by use of the evidence lower bound
(ELBO) of the variational approximation. On synthetic data
with ground truth structure and a real 3-way fluorescence
spectroscopy dataset, we demonstrate how the ELBO admits
quantification of model specification not only in terms of numbers
of components for each factor in the TTD, but also a suitable
order of the modes in which the TTD should be employed.
The proposed PTTD provides a principled framework for the
characterization of model uncertainty, complexity, and model-
and mode-order when compressing tensor data using the TTD.

Index Terms—Bayesian inference, tensor train decomposition,
matrix product state, multi-modal data

I. INTRODUCTION

Tensor decomposition approaches have become important
tools for the modeling of multi-way array data in which promi-
nent tensor decomposition approaches include the canonical
polyadic decomposition (CPD), PARAFAC2, and the Tucker
decomposition, see also [1]–[3] for reviews. Recently, the
tensor train decomposition (TTD) has been proposed as a
flexible alternative decomposition approach. The TTD has
several attractive properties including compact yet flexible
multi-way data representation, efficient inference through the
use of the singular-value decomposition, and an attractive
tensor representation format amenable to further efficient
computational modeling due to the computational efficiency
in which the model representations can contract modes and
reduce memory storage, for details see [4].

Lately, tensor decomposition has been advanced to prob-
abilistic modeling using variational inference. Benefits of
probabilistic modeling includes robustness to model miss-
specification and tools for complexity quantification through
the evidence lower bound (ELBO), see also [5]–[7], while in-
ference can be cast within traditional alternating optimization
widely used for tensor decomposition optimization [1], [2].
Exploiting the advantages of probabilistic modeling the CPD
[5]–[9] , PARAFAC2 [10], and Tucker decomposition [9], [11]
have been advanced to fully Bayesian inference frameworks.

We advance the tensor train decomposition to variational
Bayesian inference exploiting that the orthogonality structure
in the decomposition can be imposed using a matrix-von-
Mises-Fisher decomposition as used previously in the context
of orthogonal probabilistic PCA [12] and for implementing
the consistency constraints of the Gram matrices in the
PARAFAC2 model [10] based on the direct fitting procedure of
[13]. Notably, the proposed probabilistic tensor train decom-
position (PTTD) admits model evaluation using the evidence
lower bound (ELBO). We demonstrate how the ELBO can
not only be used to quantify a suitable specification of rank of
each factor in the tensor train, but also the order in which the
modes should be decomposed. We highlight these aspects on
synthetic data with ground truth TTD structure as well as on a
real fluorescence spectroscopy dataset with known underlying
CPD structure.

In summary, this paper investigates how the tensor train de-
composition can be advanced to variational inference forming
the PTTD and its inferential properties and merits are when
compared to the conventional TTD.

II. METHODS

Let X , X, and x, respectively denote a tensor, matrix, and a
vector. Let A×[a,b]B define the joint tensor contraction along
mode a and b. For a Mth order tensor AI1×...×IM and a set of
tensors {U i ∈ RDi−1×Ii×Di}i=1,...,M , where D0 = DM = 1,
we define the sequential contraction of all U i (except the mth)
onto A as contract (A, {U i}i6=m) resulting in a tensor C ∈
RDm−1×Im×Dm . Using this notation the TTD approximation
[4] can be written as:

X ≈M =U (1) ×[2,1] U (2) ×[3,1] U (3) ×[4,1] · · ·
×[M−1,1] U (M−1) ×[M,1] (SV

>)

where U (i), i = 1, . . . ,M−1 are the factors or train carts, and
last factor U (M) ≡ SV> is defined so it can handle different
scaling of each component, i.e. sdd, d = 1, . . . , DM−1.

Now, let vMF denote the von-Mises Fisher matrix dis-
tribution which defines a distribution of orthogonal matrices
on the Stiefel-manifold, T N [a,b] denote the truncated normal
distribution on the interval [a; b], and G(α, β) denote a Gamma
distribution with rate α and shape β, andNI1×I2×···×IM be the
array normal distribution extending the conventional matrix
normal distribution to higher order arrays. The generative
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model for the proposed probabilistic tensor train decompo-
sition (PTTD) is then:

τ ∼G(ατ , βτ ), λ ∼ G(αλ, βλ),
sdd ∼T N [0,∞]

(
0, λ−1

)
, d = 1, . . . , DM−1

V ∼vMF
(
0IM×DM−1

)
,

U
(m)
(1,2) ∼vMF

(
0Dm−1Im×Dm

)
,m = 1, . . . ,M − 1

X|θ ∼ NI1×I2×···×IM
(
M, II1τ

−1, II2 , . . . , IIM
)
,

where the each factor, U (m), is matricized along the first and
second mode U

(m)
(1,2) and is orthogonal in the last mode, i.e.

U
(m)>

(1,2) U
(m)
(1,2) = I. The model assumes element-wise white

noise N (0, τ−1) with τ indicating the noise precision. The
singular value of the last DM−1 components are positive and
share the same scale, as indicated by the precision λ. The
hyperparameters ατ , βτ , αλ, βλ are fixed to 10−6 resulting in
a broad prior on τ and λ.

The exact posterior distribution of the parameters, P (θ|X ),
is intractable and we use variational Bayesian (VB) in-
ference to approximate the model parameters, θ =
{τ, λ,S,V,U (1),U (2), . . . ,U (M−1)}. In VB inference the
joint posterior distributions is approximated by a factorized
distribution, here we use a mean-field approximation, i.e.

Q(τ, λ, s,V,U(1), . . . ,U(M−1)) =

Q(τ)Q(λ)Q(s)Q(V)
M−1∏
m=1

Q(U(m)), (1)

such that the marginal distribution is approximated by the
evidence lower bound (ELBO) given by

log(P (X )) ≥ ELBO(X ) =

EQ[log
(
P (X|M,τ)P (τ)P (λ)P (s)P (V)

∏M−1
m=1 P (U(m))

Q(τ)Q(λ)Q(s)Q(V)
∏M−1

m=1 Q(U(m))

)
].

EQ denotes expectation taken with respect to the Q distribu-
tion defined in eq. (1). The updates of each of the parameters
θm can be found using the coordinate ascent variational infer-
ence (CAVI) procedure conditioning on all other parameters
θ\m, see [14] for details. The update of each of the parameters
in the variational inference are given below. We note that as
an alternative to VB inference, a Gibbs sampling procedure is
easy to define and implement from these updates, by sampling
the parameters θm|θ\m, instead of computing the relevant
expectations of the random variables in VB.

Inferring U (m) for m = 1, . . . ,M − 1. Contracting X
with all but the mth factor, i.e. {U (n)}n6=m and SV, results
in a tensor of size Dm−1 × Im ×Dm (as ∀Di, i 6= m− 1,m
are also contracted). For m = 1 the contraction results in a
I1×D1 matrix and the estimation problem relates to the matrix
decomposition X(1) = U(1)W>

(1), where WD1×I2×I3×...×IM

is the tensor train reconstruction using all but the first factor.
Determining U(1) is then done by moment matching a vMF-
distribution as derived in the context of Bayesian principal
component analysis [12]. For m = 2, . . . ,M−1 , U (m) is de-
termined by contracting the data with {U (n)}n6=m, unfolding

the results, and moment matching the unfolded factor U
(m)
(1,2)

resulting in,

F̃ (m) = 〈 τ 〉
(
contract

(
X , {

〈
U (n)

〉
}n6=m

))
(1,2)

,

Q(U
(m)
(1,2)) ∼vMF(F̃

(m)), m = 1, 2, . . . ,M − 1. (2)

Where U (m) is obtained by reshaping U
(m)
(1,2) and the expected

value, 〈U(m)
(1,2)〉, is determined by using singular value decom-

position and the hypergeometric function, as shown in [12].
Inferring V. This is similar to the updates of U (m), as we

can interpret U (M) ≡ SV> and the update becomes,

F̃ (M)> = 〈 τ 〉 〈S 〉 contract
(
X , {

〈
U (n)

〉
}n6=M

)
,

Q(V) ∼vMF(F̃ (M)). (3)

Inferring S. First we define the matrix WDM−1×IM =

contract
(
X , {

〈
U (n)

〉
}n6=M

)
, then using the univariate

truncated normal distribution each sd, ∀d=1,...,DM−1
is found

by conditioning sdd|{sd′d′}d′ 6=d. The update is then,

σ2
sdd

=( 〈 τ 〉 + 〈λ 〉 )−1,
µsdd =σ2

sdd
〈Wd 〉 〈vd 〉 〈 τ 〉 ,

Q(sdd) ∼T N [0,∞]

(
µsdd , σ

2
sdd

)
. (4)

Due to orthogonality, the dependence between d and d′

disappears as v>d V\d = 0 (i.e. V>V = I). Meaning the
components can be updated jointly. The first and second
moment are estimated based on [15] which handles numerical
issues around the tail probabilities.

Inferring λ is straight forward once
〈
SST

〉
is known, the

resulting update becomes,

α̃λ = αλ + 0.5DM−1 , β̃λ = βλ + 0.5trace(
〈
SS>

〉
),

Q(λ) ∼G(α̃λ, β̃λ) (5)

Inferring τ is simple and the computational difficulty lies in
contracting all modes of the data. This simplicity arises as the
second order interactions for each U (m) and V becomes the
identity matrix, due to the orthogonality of the factors imposed
through the von Mises-Fisher matrix distribution. Thus, the
update only needs second order moments in terms of the
diagonal matrix S.

α̃τ =ατ + 0.5
M∏
m=1

Im

β̃τ =βτ + 0.5
[
trace (X ×X ) + trace

( 〈
SS>

〉 )
−2trace

(
contract

(
X , {{

〈
U (n)

〉
}n=1,...,M

)) ]
Q(τ) ∼G

(
α̃τ , β̃τ

)
.

III. RESULTS AND DISCUSSION

We analyzed the proposed PTTD in terms on synthetic data
with ground truth TTD structure as well as a fluorescence
spectroscopy dataset with known CPD structure.

The PTTD model and all the experiments are available, as
MATLAB code, at www.github.com/JesperLH/prob-tt.
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A. Simulated Experiments: Known or Unknown D

We simulated a TTD with five factors, where the latent
dimensions are D = (1, 6, 5, 4, 3, 1) and the observations in
each mode are N = (20, 19, 18, 17, 16). The order of the
factors is an important part of how the data is generated. We
refer to the generated order as the true or correct mode order,
denoted by (1, 2, 3, 4, 5). For a 5-way array there are 5! = 120
possible permutations of the modes which can be ordered as
(1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), . . . , (5, 4, 3, 2, 1) us-
ing the MATLAB function perms(5:-1:1).

Homoscedastic Gaussian noise (white noise) is added to
the generated data to obtain the desired signal-to-noise ratio
(SNR). We investigate different SNRs varying from −10dB to
10dB in steps of 2.5dB, thus varying the amount of noise, but
maintaining the same underlying data.

In this experiment, we only consider the probabilistic tensor
train (PTTD) with either known or unknown D. If D is known
then we fit PTTD with Dest = D. For unknown D, we assume
we know max(D) = 6 and set Dest = (1, 6, 6, 6, 6, 1). The
models are then applied at each SNR level and for every
permutation. To mitigate the effects of local optima each
model fitting was repeated 10 times. The average and 10 times
the standard deviation of the evidence lowerbound (ELBO) is
shown in Figure 1(a) and (b) for known and unknown model
order, respectively. Repeating the model fitting turned out to
be unnecessary as the best model, identified by maximum
ELBO, was indistinguishable from the average performance.
The maximum standard deviation over all SNR levels and
permutations was roughly 2 orders of magnitude lower than
the mean value and barely shows in Figure 1.

For known model order, we investigated fitting the true
mode order twice, first with PTTD initialized with the true
TTD, and second initialized as random orthogonal matrices.
The two schemes resulted in similar mean values, but random
initialization had higher standard deviation. The initializations
are shown to the left in Figure 1(a), but the difference between
them is negligible when compared to other mode permutations.
The maximum ELBO correctly identifies the mode order
(1, 2, 3, 4, 5) as the true mode order, regardless of noise level.

Similarly, for unknown model order the ELBO identi-
fies (1, 2, 3, 4, 5) as the true mode order, but note the re-
verse mode order (5, 4, 3, 2, 1) also has a high ELBO. This
is happens when the latent dimensions are the same (i.e.
D1, D2, D3, D4 = 6), so the true mode order and its reverse
results in the same tensor train, but starting either from the
left or right.

Contrasting the two scenarios, Figure 1(a-b) show the
ELBO vary more over permutations when the model order
is unknown. This is likely due to the larger subspace of the
unknown tensor train. It is also observed, that as the amount of
noise increases (low SNR), the difference in ELBO between
permutations decreases as it becomes harder to identify the
true mode order.
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(a) PTTD with known model order, Dest = D = (1, 6, 5, 4, 3, 1).
The highest ELBO is achieved
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(b) PTTD with unknown model order, but known max(D) = 6
setting Dest = (1, 6, 6, 6, 6, 1). . The factors have the same latent
dimension, i.e. D1, D2, D3, D4 = 6, which results in a high ELBO
for both permutation (1,2,3,4,5) and (5,4,3,2,1) as the latter is the
reverse of the correct mode order (i.e. the train is symmetric from
end to end).

Fig. 1: Simulated Experiments: Performance of PTTD
when the model order is known (a) and unknown (b).
Higher evidence lowerbound (ELBO) indicates a better
model. The permutations (5! = 120) are ordered from
(1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), . . . , (5, 4, 3, 2, 1).

B. Simulated Experiment: PTTD vs. TTD

We compare the probabilistic TTD to maximum likelihood
TTD and consider the scenarios where the model order is
known Dest = D or approximately known Dest = 2 · D
for both PTTD and TTD, denoted as (P)TTD(Dest = D) and
(P)TTD(Dest = 2 ·D). This is compared to when the model
order is defined by the maximum approximation error TTD(ε),
ε = [10−4, . . . , 10−1], as proposed in [4].

The simulated TTD is generated precisely as in Sec-
tion III-A, but we now consider more SNR levels, i.e. SNR=
[−20 : 2.5 : 20] dB and SNR= [30 : 10 : 100] dB. We fit the
model to the noisy data, Xnoisy , and evaluate the performance
by measuring the error between the tensor train reconstruction,
X recon and the noiseless data X truth.

The TTD(ε) uses the approximation threshold ε to auto-
matically determines the size of the factors. This works well
for extremely high SNR (> +20dB) as the noise is present
on a scale that is below ε. However, for lower SNR the
TTD(ε) cannot distinguish between signal and noise, and has
to increase the factors sizes (e.g. more elements) to obtain an
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Fig. 2: (a) The RMSE between the tensor train model and
the noiseless data. (b) Number of elements of elements in the
tensor train, |Gest|. The models are; PTTD (blue); TTD with
fixed model order (red); TTD(ε) with varying ε ∈ [10−4, 10−1]
(varying shades from dark to light grey).

ε-precision TTD, see Figure 2(a-b).
When the model order is (approximately) known, the per-

formance of PTTD and TTD obtain similar results from low
to high SNR ([−20, 30] dB), but differ slightly at extremely
high SNR, where PTTD achieve a numerical precision around
10−5 while TTD goes to machine precision.

C. Amino Acid Fluorescence Data

We now demonstrate how the PTTD can be used on a real
dataset to determine the most likely mode and model order
(i.e. mode permutation order and D) by comparing the ELBO
across different model fits. The Amino Acid Fluorescence Data
[16] contains five different laboratory-made samples, which
are mixtures of three pure samples with known concentrations.
For each mixed sample, an emission-excitation matrix was
measured using fluorescence spectroscopy (excitation 250-
300nm, emission 250-450mm, with resolution 1nm). The
resulting dataset is a third-order tensor, X 5×201×61, with the
modes being samples, emission wavelength, and excitation
wavelength (e.g. original mode order (1, 2, 3)).

To determine the most likely mode and model order, we
fit PTTD to all 6 permutations of the modes and for each

Mode Order ELBO DELBO |GELBO|
(1,2,3) 0.774 (1,4,3,1) 806
(1,3,2) 0.882 (1,4,5,1) 1330
(2,1,3) 0.969 (1,7,4,1) 1671
(2,3,1) 1.000 (1,6,5,1) 1536
(3,1,2) 0.967 (1,10,4,1) 1434
(3,2,1) 0.804 (1,4,5,1) 1274

TABLE I: Amino Acid: For each mode order, the best
performance identified by maximum ELBO (scaled to max =
1), as well as the corresponding model order DELBO =
(D0, D1, D2, D3) and number of elements in the tensor train
|GELBO| is given.

permutation tested all model orders D1, D2 ∈ [1, 30]. Note
for mode i it must be true that Di ≤ Ni because of the
orthogonality constraint on U (i). The results are shown in
Table I and Figure 3.

The maximum ELBO of PTTD for every permutation of
the data (mode order) and for varying model order, D =
(1, D1, D2, 1), is shown in Table I. The best mode order is
(2, 3, 1), e.g. emission wavelength × excitation wavelength ×
samples, with a model order of D = (1, 6, 5, 1).

The true physical model for the data is a three component
non-negative CPD (actually also uni-modal, but this is not
enforced). Since the five samples are mixtures of three pure
samples, with known concentration, we can calculate the
correlation between the estimated concentrations (i.e. factor
loadings in the sample mode) and true concentrations. When
the true physical model is fit to the raw data, this correlation
is ρ = 0.9993. The exact same correlation is obtained if the
model is fit to the data reconstructed by probabilistic TTD,
for all the mode and model orders shown in Table I. The
raw data contains 61305 element and the best tensor train
has |G| = 1536 elements. Thus, the TTD gives a 40 times
reduction in the number of elements required to represent the
data while still obtaining the correct solution.

The raw data, the best PTTD, and the true physical model
(fit to the raw data) are shown in Figure 3. The difference
between the raw and reconstructed data (either by PTTD or
non-negative CPD) is also shown. The main difference is that
non-negative CPD removes both unstructured (e.g. random
Gaussian) and structured (caused by Rayleigh scattering) noise
while PTTD only remove unstructured noise as the Rayleigh
scattering is considered part of the signal.

This experiment illustrates that PTTD can determine the
best TTD mode and model order, as well as remove unstruc-
tured noise obtaining a high compressing of the original data.

IV. CONCLUSION

In this article, we introduced the probabilistic (Bayesian)
tensor train decomposition (PTTD) and showed how the
posterior distribution could be approximated using variational
Bayesian (VB) inference. On both simulated and a real dataset,
we showed that for VB based inference the evidence lower-
bound (ELBO) can be use to identify both the mode and model
order, i.e. permutation and size of TTD carts, respectively.
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Fig. 3: Amino Acid: Emission Excitation Matrix for the original data (1st row), reconstruction via the best (ELBO) tensor
train approximation (2nd row), and their difference X org −X tt (3rd row). Reconstruction from the true physical model, and
its difference from the observed data (4th and 5th row, respectively).

On the simulated data, we further showed that maximum
likelihood TTD based on an approximation threshold ε (see
[4]) is unable to separate signal from noise (Figure 2) unless
the signal to noise ratio (SNR) is extremely high (> +20dB).
In contrast PTTD and TTD with fixed rank perform well even
at very low SNR (∼ −15dB).

The experiments illustrate how PTTD can be applied for
data compression and to remove unstructured noise (but not
structured, e.g. Rayleigh scattering). Future work should in-
vestigate how the proposed VB inference for PTTD can be
scaled to large arrays and how additional constraints (c.f. [17])
for interpretability or to model physical aspects of the data
imposed in the context of PTTD.

We only considered starting with a full tensor and decom-
posing it into a TTD. An important future extension is to
consider TTD input (with large model order) and how the TTD
structure of the data can be used to efficiently perform prob-
abilistic TTD, especially efficient computation of contract()
as it is the main bottleneck of our implementation. Another
extension, inspired by [4], is to explore how operations such
as addition, multiplication, mode contraction, etc. are carried
out for PTTD and how it affects the underlying distributions.
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