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Abstract—In this work, we introduce an iterative method
for the estimation of vector autoregressive (VAR) models with
Granger and stability constraints. When the order of the model
(p) and the Granger sparsity pattern (GSP) are not known, the
newly proposed method is integrated in a two-stage approach.
An information theoretic (IT) criterion is used in the first stage
for selecting the value of p. In the second stage, a set of possible
candidates for GSP are produced by applying the Wald test,
and the best one is chosen with an IT criterion. In experiments
with synthetic data, we demonstrate that our method yields more
accurate forecasts than the state-of-art algorithm that is based
on convex optimization and fits models which are guaranteed to
be stable.

Index Terms—Vector autoregressive models, Granger causality,
stability, convex optimization, information theoretic criteria

I. INTRODUCTION

Motivation: Granger causality has been widely employed in
the analysis of multivariate signals. When the signal is repre-
sented by the vector-valued random variable y, “a component
yb Granger-causes the component ya if the use of the former
improves the forecasts of the latter” [1]. The condition takes a
particularly neat form in the case of the vector autoregressive
(VAR) processes, where it reduces to finding the sparsity
pattern for the matrix coefficients of the model. In recent years,
the popularity of the sparse VAR-models has increased (see,
for example, [2]–[4] and the references therein).

The methods that are routinely applied for estimating VAR-
models with Granger constraints do not guarantee the stability
of the solution. In [5], after briefly mentioning the previous
attempts at fitting VAR-models with Granger and stability
constraints, the authors formulate the estimation problem as
a convex optimization problem that can be easily solved with
CVX [6]. The major drawback is that the constraints for
stability are too conservative and this can potentially reduce
the performance when the model learned from the training
data is used to predict the values in the test data.
Contributions and organization of the paper: After presenting
in Sec. II the VAR-identification problem (i) with Granger
constraints and (ii) with Granger and stability constraints, we
introduce in Sec. III a novel estimation method. The new
method is iterative and relies on the theoretical result in
Theorem 1 that provides a sufficient stability condition, much
more flexible than that from [5].

In [5], the Granger constraints are sparsity patterns produced
by applying the Wald test [7], with various significance
values. This does not lead to an automatic procedure for the
identification of the model. Because we aim to eliminate the
subjective decisions, we propose a two-stage approach. In the
first stage, the order of the model is selected by an information
theoretic (IT) criterion, and in the second stage the sparsity
pattern is chosen from the set of the candidates yielded by the
Wald test. In the second stage, the selection is again done by
using an IT criterion. The complete procedure is described in
Sec. IV.

The new method is compared with the state-of-the-art in
Sec. V, where we conduct experiments with simulated data.
The superiority of our proposal stems from the fact that it
yields VAR-models that are guaranteed to be stable and, at
the same time, produces accurate forecasts. Sec. VI concludes
the paper.
Notation: We use bold letters for both vectors and matrices;
I is the identity matrix of appropriate size. The symbol ya
denotes the a-th entry of an arbitrary vector y. For a matrix
A, the symbol (A)ab denotes its entry that it is located at the
intersection of the a-th row with the b-th column. The operator
for transposition is (·)T . The symbols || · ||2, || · ||∞ and || · ||F
are used for the `2-norm, `∞-norm and the Frobenius-norm,
respectively. The notation log(·) is used for the natural loga-
rithm. The symbol Fχ2

p
(·) denotes the cumulative distribution

function of a chi-squared random variable (with p degrees of
freedom). For any integer m > 1, we employ the notation
1 : m for the set {1, . . . ,m}.

II. ESTIMATION PROBLEM

Consider a stationary and stable VAR process of order p >
0, for which the difference equation is [1]:

y(n) = A1y(n− 1) + . . .+Apy(n− p) + ε(n), n = 1 : N,
(1)

where A1, . . . ,Ap are matrix coefficients of size K × K.
The vectors {ε(n)}Nn=1 are independently and identically
distributed, and they are drawn from a K-variate Gaussian
distribution with zero mean vector and non-singular covariance
matrix Σ. The vectors {y(n)}0n=1−p are assumed to be
constant.
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A fundamental result says that, for some a, b ∈ K, where
K = {1, . . . ,K}, yb does not Granger-cause ya if and only if
(Ai)ab = 0 for i = 1 : p [1]. In order to write the estimation
problem as an optimization problem with constraints, we
collect in G all the pairs (a, b) with the property that yb does
not Granger-cause ya. We assume for the moment that G is
known. Additionally, we concatenate the VAR-coefficients in
a K × pK matrix

A =
[
A1 A2 . . . Ap

]
, (2)

and use the measured vectors for building the matrices

Y =
[
y(p+ 1) y(p+ 2) . . . y(N)

]
, (3)

H =


y(p) y(p+ 1) . . . y(N − 1)

y(p− 1) y(p) . . . y(N − 2)
...

... . . .
...

y(1) y(2) . . . y(N − p)

 . (4)

Hence, the VAR-identification problem subject to Granger
constraints can be written as follows (see also the discussion
in [5]):

minA ‖Y −AH‖2F
s.t. (Ai)ab = 0, i = 1 : p, if (a, b) ∈ G (5)

This is a constrained least squares (LS) problem whose
solution can be easily obtained, but the main drawback is
that the estimated model is not guaranteed to be stable. For
circumventing this difficulty, the authors of [5] proposed to
estimate the matrix coefficients of the VAR-model by solving
the problem

minA ‖Y −AH‖2F
s.t. (Ai)ab = 0, i = 1 : p, if (a, b) ∈ G

‖A‖∞ ≤ 1
(6)

The second constraint comes from a sufficient stability con-
dition associated with the state matrix of the pK-dimensional
VAR(1) process corresponding to (1). This matrix is

A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


and its first K rows are equal to A. The model resulting
from (6) is stable and satisfies the Granger constraints, but
the accuracy of the estimation is affected by the fact that the
stability constraint is too conservative. In the next section, we
introduce a novel method for solving the problem that it is of
interest for us. The key point is a theoretical result that allows
to fit iteratively stable models to the data.

III. ITERATIVE ESTIMATION

We denote

C(z) =

p∑
i=0

Ciz
−i, (7)

a causal matrix polynomial with K × K coefficients. In our
case C0 = I , but the next result holds for any C0. Let us
assume that C(z) is fixed and stable, in the sense that the
VAR process (1) associated with it is stable. Let

D(z) =

p∑
i=1

Diz
−i (8)

be another matrix polynomial, now variable. Note that its free
coefficient is zero.

Theorem 1: The polynomial C + D is stable if the sym-
metric polynomial

R(z) = 2C(z−1)TC(z) +C(z−1)TD(z) +D(z−1)TC(z)
(9)

is positive definite on the unit circle.
This is a sufficient stability condition, that describes a

stability domain around C(z), which can be considered its
center (although the domain typically has not a spherical,
ellipsoidal or other symmetric shape). The domain is convex.
The proof is a direct extension to matrix coefficient of the
proof in [8] and is not given here for space reasons.

The condition from Theorem 1 cannot be implemented as
such, but in the relaxed condition

R(z)− λI is sum-of-squares, (10)

where λ is a small positive constant that ensures some robust-
ness to the stability condition and has also the role to improve
the numerical conditioning. The domain described by (10) is
also convex. The properties of trigonometric polynomials that
are sum-of-squares are discussed in [8]; especially important
here is their parameterization with linear matrix inequalities
(LMI), which allows easy integration in convex optimization
problems. So, given a stable polynomial C(z) with C0 = I
and denoting

A(z) = I −
p∑
i=1

Aiz
−i, (11)

adding stability constraints to (5) leads to the problem

minA,D ‖Y −AH‖2F
s.t. (Ai)ab = 0, i = 1 : p, if (a, b) ∈ G

A(z) = C(z) +D(z)
relation (10) holds,
with R(z) defined by (9)

(12)

Using the parametrization of a sum-of-squares polynomial as
an LMI, this problem can be transformed into a semidefinite
programming problem, which can be solved efficiently and
conveniently with CVX and Pos3Poly [9]. Note that the
coefficients of A(z) and D(z) appear linearly in (12).

Problem (12) can be solved several times. The first time we
take either C(z) = I , which is the trivial initialization, or take
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Algorithm 1 Two-Stage Approach

Stage1 [Select p̂]:
for all p ∈ {1, . . . , pmax} do

Fit VAR(p) to Y and compute ITC(Y ; p).
end for
p̂← arg min

1≤p≤pmax

ITC(Y ; p).

Stage2 [Select Ĝ]:
for all α ∈ P do
Th← F−1

χ2
p̂
(1− α)

for all (a, b) ∈ K2 do
Compute Wald statistic Wab.
Get the Granger sparsity pattern:
(Gα)ab ← 1 if Wab > Th
(Gα)ab ← 0 otherwise

end for
Fit to the data a VAR-model with order p̂ and
sparsity pattern Gα. Enforce stability.
Compute ITC(Y ; p̂,Gα).

end for
Ĝ ← argmin

Gα
ITC(Y ; p̂,Gα).

C(z) equal to the solution of the Granger problem (6), which
has simpler (and more conservative) stability conditions. In
the next iterations, we take C(z) equal to the solution A(z)
of the previous problem (12). Since the stability domain is
built around the previous solution, the value of the objective
is guaranteed to decrease from an iteration to the next.

IV. TWO-STAGE APPROACH

All the methods presented above assume that the order p
and the sparsity pattern G are known. Because this is not true
in practical applications, we propose a two-stage approach. In
the first stage, an estimate p̂ of the order is obtained by using
an IT criterion. In the second stage, the estimated model of
order p̂ is used for generating a set of possible candidates for
G. To this end, we apply the Wald test for the significance
values P = {0.001, 0.002, 0.005, 0.010, 0.020, 0.025, 0.050,
0.100, 0.200, 0.975, 0.995}. In this way, we get at most eleven
different candidates from which we select the sparsity pattern
Ĝ by using again an IT criterion, which is not necessarily
the same as the one employed in the first stage. A complete
description of this procedure can be found in Algorithm 1.

The use of the two-stage approach is advantageous because
it reduces the computational complexity as the convex op-
timization problems like those in (5), (6), (12) are solved
for only a limited number of candidates. The same idea
was already applied in [10] in a different context, where
in the second stage have been fitted models with a certain
sparsity pattern for the inverse spectral density matrix (ISDM).
Enforcing sparsity for the model coefficients is different from
enforcing sparsity for ISDM. This is why we resort to the Wald
test that was already applied in [5], where the interested reader
can find all the details related to its calculation. However, the

discussion in [5] is limited to the influence of the significance
value on Type I and Type II errors. Here we propose a method
for selecting Ĝ. The use of IT criteria is important because the
distributional properties of the Wald statistics on which the test
is based are derived under asymptotic assumptions, and hence
should be used with caution when the sample size is small
or moderate [7]. A possible alternative is the cross-validation,
but this leads to a higher computational burden.

In the first stage, we apply the following IT criteria for
selecting the order of the model: (i) Schwarz Bayesian Crite-
rion (SBC), which is the name used in time series literature
for the Bayesian Information Criterion (BIC) [11]; (ii) Final
Prediction Error (FPE) that was introduced by Akaike in
[12]; (iii) Corrected Akaike Information Criterion (AICc) [13],
a variant of the Akaike Information Criterion (AIC) [14]
designed for small sample sizes; (iv) Renormalized Maximum
Likelihood (RNML) that was derived and analyzed in [10],
[15] by relying on the theory from [16].

In the second stage, we apply the same criteria and, as in
[10], [17], [18], we alter them by replacing the number of
parameters with the effective number of parameters (Nef ). In
contrast to the aforementioned references, we do not count the
non-zero entries of the ISDM, but the non-zero entries of the
matrix coefficients and, because of that, Nef = (K2 −N0)p̂,
where N0 stands for the number of zeros in the sparsity pattern
Ĝ. An important difference with respect to Stage 1 is that,
in Stage 2, the number of potential candidates can be much
larger. In the first stage, the number of the candidates is given
by the maximum possible value of the order (pmax), while in
the second stage is 2K

2

. In order to take into consideration
this aspect, we implement two extended criteria, namely the
extended BIC (EBIC) and the extended RNML (ERNML).
Note that EBIC is obtained by adding the term 4Nef logK to
BIC. Similarly, ERNML is computed by adding 2Nef logK
to RNML. More details about the two criteria can be found
in [18], [19].

V. NUMERICAL EXAMPLES

We conduct two experiments, called Exp1 and Exp2. In
Exp1, we simulate data for a VAR-model with K = 10 and
p = 3 (large number of components and small order). In Exp2,
K = 3 and p = 10 (small number of components and large
order). In both experiments, the sparsity pattern G is selected
such that the entries on the main diagonal are non-zero and at
most 60% of the K2 entries are equal to zero. All non-zero
entries are drawn independently from a Gaussian distribution
with zero-mean and standard deviation equal to 0.25.

The number of trials is Ntr = 200 as we generate 200
datasets for Exp1 and Exp2, respectively. Four different values
of the sample size are considered for each dataset: N ∈
{200, 300, 400, 500}. For each trial, a new set of matrix
coefficients are simulated as explained above. In all cases, the
covariance matrix for the driven noise is Σ = 0.5I , and the
noise samples are independent with respect to the randomly
generated entries of the coefficients. All generated models are
guaranteed to be stable. In the Matlab implementation, we use
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Fig. 1: Results of prediction in Exp1. For each sample size
(N ), a different color is used for each boxplot, depending on
the convex optimization problem solved in the training phase:
the first boxplot (in black) is for (5), the second one (in blue)
is for (6) and the last one (in red) is for (12).

for simulating the data and for fitting the model in the first
stage some functions from the package written for [20]. We
take pmax = 15 in Algorithm 1. The iterative estimation based
on problem (12) is initialized with the solution of (6). We take
λ = 0.1 in (10).

In each experiment, we use the model estimated from the
first N measurements in order to forecast the values at the
time moments N + 1, . . . , N + h, where h = 100. Note that
the sample size for the training set varies, whereas the number
of samples within the test set is constant. Let etr,n

C1,C2,ME be the
vector of the prediction errors at time moment n in trial tr;
C1 and C2 denote the IT criteria applied in the first and in the
second stage; ME stands for the estimation method used in
training, which corresponds to one of the convex optimization
problems in (5), (6), (12). For the sake of completeness,
we also allow C1 to be an oracle knowing the true order
of the VAR-model. Similarly, C2 can be an oracle that is
knowledgeable about the sparsity pattern G.

For each triple (C1,C2,ME) and for each trial tr, we

compute MSEtr
C1,C2,ME =

1

K

1

h

N+h∑
n=N+1

∥∥∥etr,n
C1,C2,ME

∥∥∥2
2
. Then

we calculate median
(

MSE1
C1,C2,ME, . . . ,MSENtr

C1,C2,ME

)
and

report the results in [21, Tables 25-32]. The same results are
presented by using boxplots in Fig. 1 for Exp1 and in Fig. 2
for Exp2. Note that for a given sample size N we show in the
boxplot corresponding to a method ME the results for all the
pairs (C1,C2) of IT criteria. The most important conclusion
that can be drawn from the two figures is that the forecast
performance of the iterative estimation method that we propose
is similar to that of the classical identification method based on
LS with Granger constraints. The method from [5] produces

Fig. 2: Results of prediction in Exp2: All graphical conven-
tions are the same as in Fig. 1. Note that the range of the
values on the vertical axis of the plot is different from the
range in Fig. 1.

the worse prediction results.
Both our method and the one from [5] have the advantage of

yielding only stable models. According to the results reported
in [21, Tables 17-24], the empirical probability that “LS with
Granger constraints” produces an unstable model can be as
large as 0.325 in Exp2 when N = 200. For the same sample
size, in Exp1, the empirical probability is at most 0.185.

Another important aspect concerns the capability of re-
covering the true sparsity pattern. Let Dtr

C1,C2,ME denote the
number of the positions where Ĝ estimated in trial tr is
different from G. The significance of C1, C2 and ME is
the same as before. We use this quantity for measuring the
errors that occur in the estimation of the sparsity pattern.
This means that we implicitly assume that Type I errors and
Type II errors are equally important. For other applications,
one may employ a dissimilarity measure that gives different
weights to the two types of errors. Furthermore, we calculate
1

K2

1

Ntr

Ntr∑
tr=1

Dtr
C1,C2,ME and show the results in [21, Tables 9-

16]. The same values are also displayed in Figs. 3-4 by using
boxplots. It is evident from those figures that the accuracy in
estimating the sparsity pattern is almost the same disregarding
the convex optimization problem that it is solved. As expected,
the accuracy improves when the sample size N raises. Interest-
ingly enough, the outliers corresponding to modest estimation
results in Exp1 for N < 400 are because of the use of AICc in
the selection of the sparsity pattern (see again [21, Tables 9-
10]). This indicates that it is not recommended to apply AICc
in the second stage of the algorithm when N is small.

In spite of the difficulties related to the use of AICc in
the second stage, AICc performs well when it is employed
to select the order of the model. According to [21, Tables 1-
8], FPE is the best and AICc is the second best in correctly
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Fig. 3: Exp1 - Average distances from the estimated sparsity
pattern to the true one. For each sample size (N ), a different
color is used for each boxplot. The significance of the colors
is the same as in Fig. 1.

estimating the order p. Both SBC and RNML tend to underes-
timate the order. This is surprising because RNML was found
to be superior to other IT criteria in estimating the order of
VAR-models having a certain sparsity pattern for the ISDM
[10], [15].

VI. FINAL REMARKS

The novel estimation method introduced in this work is su-
perior to “LS with Granger constraints” because it guarantees
the stability of the fitted model. We have provided empirical
evidence that it is also superior to the method from [5] because
it yields better predictions. Another outcome of the experimen-
tal results is that SBC should be used with caution for selecting
the order of sparse VAR-models when the sample size is small
or moderate. The same applies to the use of AICc for choosing
the Granger sparsity pattern. The experimental results can be
reproduced by using the Matlab code available at https://www.
stat.auckland.ac.nz/%7Ecgiu216/PUBLICATIONS.htm.
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