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Abstract—This paper proposes two statistical models for the
nonnegative matrix factorization (NMF) based on heavy-tailed
distributions. In the NMF for acoustic signals, previous works
justify the additivity of an observed spectrogram using the
reproductive property of a probability density function. However,
the effectiveness of these properties is not clear. Consequently,
to construct a model robust to noise, statistical models based on
heavy-tailed distributions are recently growing up. In this paper,
as heavy-tailed models for the NMF, we introduce statistical
models based on the complex Laplace distributions, and call
them Laplace-NMF. Moreover, we derive convergence-guaranteed
optimization algorithms to estimate parameters. From our for-
mulation, a statistical interpretation of the Itakura-Saito (IS)
divergence-based NMF is newly revealed. We confirm the effec-
tiveness of Laplace-NMF in semi-supervised audio denoising.

Index Terms—complex Laplace distribution, nonnegative ma-
trix factorization, majorization-minimization algorithm, source
separation

I. INTRODUCTION

The objective of the nonnegative matrix factorization (NMF)
[1] is to decompose the nonnegative observed matrix Y ∈
RM×N+ (R+ = [0,∞)) into two nonnegative matrices W ∈
RM×K+ and H ∈ RK×N+ as Y ' WH . In general, a value
less than min(M,N) is used for K to obtain a low-rank
approximation of Y . We can obtain an approximation of Y by
minimizing a divergence between Y andWH . In general,W
and H are estimated using multiplicative update rules based
on majorization-minimization (MM) algorithms [2].

In acoustic signal processing applications (e.g. music tran-
scription [3], [4] and audio denoising [5]–[7]), an amplitude
or a power spectrogram is used as the observed matrix. The
observed spectrogram is decomposed into a set of spectra
and time-varying activation weights corresponding to W and
H [3].

To obtain W and H from the observed spectrogram, the
generalized Kullback-Leibler (KL) divergence [1] is often used
for the divergence in the NMF [7]–[9]. From a statistical
perspective, we regard the NMF based on the generalized KL
divergence (KL-NMF) as the statistical model that assumes
each element of the observed matrix follows the Poisson
distribution [10]. However, this assumption is not appropri-
ate for audio signals because the elements of the observed
spectrogram are continuous variables.

This work was partially supported by Grant-in-Aid for JSPS Fellows
(KAKENHI 18J14238).

Towards appropriate statistical models for the NMF, re-
cently, the NMF based on the α-stable distribution [11] (α-
stable-NMF) has been investigated [12]. Because the α-stable
distribution has the reproductive property in the sum of ran-
dom variables, α-stable-NMF justifies the assumption on the
additivity of fractional power spectra. α-stable-NMF includes
the NMF based on the complex Gaussian (Gaussian-NMF [4]),
the complex Cauchy (Cauchy-NMF [13]), and the Lévy (Lévy-
NMF [14]) distributions for special cases. In particular, due to
the heavy-tailed nature of the α-stable distribution, Cauchy-
NMF and Lévy-NMF are effective in audio denoising when
the observed spectrogram is corrupted by impulsive noise [13],
[14]. However, it is not clear whether the reproductive property
of the α-stable distribution for α-stable-NMF is effective in
the denoising and the signal separation tasks.

As a statistical model based on a heavy-tailed distribution,
the NMF based on the Student’s t distribution (t-NMF) has
been proposed [15]. The complex Student’s t distribution is
a generalization of the complex Cauchy and the complex
Gaussian distributions. Thus, t-NMF is equivalent to Cauchy-
NMF and Gaussian-NMF, when the number of degrees of
freedom ν is ν = 1 and ν → ∞, respectively. Although the
reproductive property of the complex Student’s t distribution
does not hold for any ν, t-NMF provides promising results in
signal separation [15].

As alternatives to the conventional models based on the
heavy-tailed distributions, in this paper, we introduce Laplace-
NMF, which utilizes the complex Laplace distributions. The
complex Laplace distributions are derived by integrating the
variance of the complex Gaussian distribution out using the
exponential and the gamma distribution [16]–[18]. The prob-
ability density function (PDF) includes the modified Bessel
function of the second kind when the exponential distribution
is used [16], [17]. Also, the exponential function appears in the
PDF when the gamma distribution is used [18]. The PDFs have
heavier tails and sharper peaks than the complex Gaussian
distribution. Nevertheless, the tails of the complex Laplace
distributions are not as heavy as the α-stable distribution. This
feature will bring to Laplace-NMF a characteristic that the re-
constructed matrix fits to the observed spectrogram accurately
compared with the conventional heavy-tailed models. The
complex Laplace distributions cannot model the additivities of
the amplitude and the power spectrograms. However, Laplace-
NMF is appropriate as a statistical approach for modeling of
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Fig. 1. Probability density functions used for the NMF.

acoustic signals.
In this study, we introduce two cost functions based on the

complex Laplace distributions. Moreover, we discover a new
statistical interpretation of the NMF based on the Itakura-
Saito (IS) divergence (IS-NMF [4]). To estimate parame-
ters of Laplace-NMF, using the MM algorithm, we derive
convergence-guaranteed optimization algorithms. We evaluate
the performances of Laplace-NMF in fitting synthetic datasets
and semi-supervised audio denoising [5], [6].

II. STATISTICAL MODELS OF LAPLACE-NMF

In this section, we formulate the NMF using the complex
Laplace distributions.

A. Review of the complex Laplace distributions

The complex Laplace distributions are scale mixtures of
Gaussians that have the form p(x|µ) =

∫
R+
NC(x|µ, σ2)

pσ2(σ2)dσ2, where x is a complex-valued random variable,
NC(x|µ, σ2) is the complex Gaussian distribution with mean µ
and variance σ2, and pσ2 is any function. In [16], [17], the ex-
ponential distribution with scale λ2 is used for pσ2(σ2). Then
the complex Laplace distribution p(x|µ = 0) , LKC (x;λ) is
written as

LKC (x;λ) =
2

πλ2
K0

(
2|x|
λ

)
, (1)

where Kν(t) (t ∈ R+, ν ∈ R) is the modified Bessel
function of the second kind defined as Kν(t) = 1

2

∫
R+
u−ν−1

exp(− t
2 (u+ u−1))du.

Another form of the complex Laplace distribution is intro-
duced in [18]. In this literature, the gamma distribution with
shape 3

2 and scale λ2 is used for pσ2(σ2). The PDF, denoted
by Lexp

C (x;λ), is written as

Lexp
C (x;λ) =

2

πλ2
exp

(
−2|x|

λ

)
. (2)

By integrating Im[x] out from (1) and (2), we can obtain the
marginalized distributions of Re[x] as

∫
R L
K
C (x; 1)dIm[x] ∝

exp(−2|Re[x]|) and
∫
R L

exp
C (x; 1)dIm[x] ∝ |Re[x]|K1(2

|Re[x]|), respectively [16].

B. Cost functions of Laplace-NMF

The cost functions of Laplace-NMF are obtained from (1)
and (2). Let yCmn be the observed complex spectrogram at
the mth frequency bin and the nth frame. In this paper,
we construct the observed nonnegative matrix Y = [ymn]
using ymn = |yCmn|. Then yδmn is approximated using ŷmn =

Fig. 2. Cost functions for ymn = 1 in statistical models for the NMF.

∑K
k=1 wmkhkn, where δ > 0. When δ = 1 and δ = 2, [yδmn]

are the amplitude and the power spectrogram, respectively.
Also, [ŷ1/δmn] can be regarded as the estimate of the amplitude
spectrogram. The cost functions of Laplace-NMF are given
by the negative log-likelihood functions with (1) and (2). By
substituting ymn and λŷ

1/δ
mn into |x| and λ of (1) and (2),

we obtain the cost functions based on the complex Laplace
distributions as

fLK
C
(W ,H)

c
=
∑
m,n

[
2

δ
log ŷmn−logK0

(
2ymn

λŷ
1/δ
mn

)]
(3)

fLexp
C

(W ,H)
c
=
∑
m,n

[
2

δ
log ŷmn +

2ymn

λŷ
1/δ
mn

]
, (4)

where W = [wmk], H = [hkn], and c
= denotes equality up

to constant terms. Equation (3) is minimized when ymn =

ŷ
1/δ
mn,∀m,n. The scale λ in (3) is therefore the solution of

∂fLK
C
(W ,H)

∂ŷmn

∣∣∣∣∣
ŷ
1/δ
mn=ymn

= 0. (5)

Equation (5) is simplified as λK0(2λ
−1) = K1(2λ

−1). Thus,
we can obtain λ before evaluating the cost function. In a
similar way, we have λ = 1 for (4). In this paper, we refer to
the NMF with the cost functions (3) and (4) as LKC -NMF and
Lexp
C -NMF, respectively.
When δ = 1, that is, when the amplitude spectrogram

is decomposed, (4) is equivalent to the cost function of IS-
NMF. In the previous work [4], to decompose power spectra,
IS-NMF is derived using the statistical model based on the
complex Gaussian distribution. However, the statistical model
of IS-NMF for amplitude spectra [19], [20] has not been
revealed. Lexp

C -NMF includes IS-NMF which decomposes not
power spectra but amplitude spectra.

We show the marginalized distributions of Re[yCmn] and the
PDFs with respect to |yCmn| for the NMF in Fig. 1(a) and (b),
respectively. The Cauchy distribution has the heaviest tail in
the distributions in Fig. 1. Nevertheless, the PDFs for Laplace-
NMF have heavier tails than the Gaussian distribution.

Moreover, in Fig. 2, we plot the divergences between yδmn
and ŷmn. We can obtain the divergences for Laplace-NMF by
removing the summation signs in (3) and (4). In Fig. 2(a) and
(b), δ is set to δ = 1 and δ = 2, respectively. When ŷmn
is smaller than yδmn, Laplace-NMF gives larger penalties than
t-NMF with ν = 2 and Cauchy-NMF.

2019 27th European Signal Processing Conference (EUSIPCO)



III. OPTIMIZATION OF THE COST FUNCTIONS

In this section, we propose multiplicative update rules
for Laplace-NMF. Our update rules are derived using the
framework of the MM algorithm [21], which minimizes an
upper bound of a cost function.

A. LKC -NMF

The derivation of an upper bound for LKC -NMF is not
straightforward because (3) includes the special function
of ŷmn. To obtain a tractable upper bound for (3), we
apply the probabilistic form of the Jensen’s inequality to
logLKC (yCmn; ŷmn). We can construct LKC (yCmn; ŷmn) as
LKC (yCmn; ŷmn) =

∫
R+
p(yCmn|zmn)p(zmn; ŷmn)dzmn, where

p(yCmn|zmn) is the complex Gaussian distribution with vari-
ance zmn and p(zmn; ŷmn) is the exponential distribution with
scale λ2ŷ2/δmn . Thus, using the probabilistic form of the Jensen’s
inequality, the upper bound for (3) is derived as follows:

fLK
C
(W ,H)

c
= −

∑
m,n

logLKC (yCmn; ŷmn)

≤ −
∑
m,n

∫
R+

p(zmn|yCmn; ˜̂ymn)log
p(yCmn|zmn)p(zmn;ŷmn)

p(zmn|yCmn;˜̂ymn)
dzmn

c
=
∑
m,n

(
2

δ
log ŷmn +

Ep(zmn|yCmn;˜̂ymn)[zmn]

λ2ŷ
2/δ
mn

)
, (6)

where ˜̂ymn is the latest estimate for ŷmn, zmn is the latent
variable, and Ep(zmn|yCmn;˜̂ymn)[zmn] is the expectation of zmn
with respect to the posterior distribution p(zmn|yCmn; ˜̂ymn).
Moreover, for log ŷmn and ŷ

−2/δ
mn in (6), we apply the first

order Taylor expansion and the Jensen’s inequality written as

log ŷmn ≤
1

ϕmn
(ŷmn − ϕmn) + logϕmn (7)

ŷ−γmn ≤
K∑
k=1

ργ+1
mnk

(wmkhkn)γ
, (8)

where γ, ϕmn, ρmnk > 0,∀m,n, k, and
∑K
k=1 ρmnk = 1. The

right hands of (7) and (8) are minimized with respect to ϕmn
and ρmnk when ϕmn = ŷmn and ρmnk = wmkhkn/ŷmn,
respectively. By substituting (7) and (8) into (6), we obtain
the upper bound f+LK

C
(W ,H,ϕ,ρ) for fLK

C
(W ,H) as

f+LK
C
(W ,H,ϕ,ρ)

c
=
∑
m,n

[
2

δ

{
1

ϕmn
(ŷmn−ϕmn)+logϕmn

}

+
ζδmn
λ2

K∑
k=1

ρ
2/δ+1
mnk

(wmkhkn)
2/δ

]
, (9)

where ϕ = {ϕmn}, ρ = {ρmnk}, and ζδmn =
Ep(zmn|yCmn;˜̂ymn)[zmn]. The minimization problems of f+LK

C
(W,

H,ϕ,ρ) and fLK
C
(W,H) are equivalent. By using the partial

derivatives of f+LK
C
(W ,H,ϕ,ρ) with respect to wmk and hkn,

we obtain the update rules for LKC -NMF as

wmk ← wmk

∑n
ζδmn

λ2ŷ
2/δ+1
mn

hkn∑
n hkn/ŷmn

δ/(δ+2)

(10)

hkn ← hkn

∑m
ζδmn

λ2ŷ
2/δ+1
mn

wmk∑
m wmk/ŷmn

δ/(δ+2)

(11)

ζδmn = λymnŷ
1
δ
mnK1

(
2ymn

λŷ
1/δ
mn

)
K0

(
2ymn

λŷ
1/δ
mn

)−1
. (12)

Equation (12) is derived from the first order moment of the
generalized inverse Gaussian distribution [17].

B. Lexp
C -NMF

Update rules for Lexp
C -NMF are also derived using the MM

algorithm. The upper bound f+Lexp
C

(W ,H,ϕ,ρ) for (7) is
given by substituting (7) and (8) into (4) as

f+Lexp
C

(W ,H,ϕ,ρ)=
∑
m,n

[
2

δ

{
1

ϕmn
(ŷmn−ϕmn)+logϕmn

}

+2ymn

K∑
k=1

ρ
1/δ+1
mnk

(wmkhkn)1/δ

]
. (13)

The update rules for Lexp
C -NMF are derived by using partial

derivatives of f+Lexp
C

(W ,H,ϕ,ρ) with respect to wmk and
hkn, and they are written as

wmk ← wmk

(∑
n

ymn

ŷ
1/δ+1
mn

hkn∑
n hkn/ŷmn

)δ/(δ+1)

(14)

hkn ← hkn

(∑
m

ymn

ŷ
1/δ+1
mn

wmk∑
m wmk/ŷmn

)δ/(δ+1)

. (15)

When δ = 1, (14) and (15) are equivalent to the update rules
based on the MM algorithm for IS-NMF [22].

IV. EVALUATION

To evaluate performances of Laplace-NMF, we applied
Laplace-NMF to fitting random data and semi-supervised
audio denoising [5], [6].

A. Fitting synthetic data

We performed the simulation to evaluate the data fitting
abilities of Laplace-NMF.

We generated impulsive data and random data following the
complex Laplace distributions. To generate impulsive data, we
constructed wmk and hkn using 4th power of the Gaussian ran-
dom noise. yCmn was then drawn from the complex Student’s
t distribution with degrees of freedom ν = 5 and the scale
(
∑K
k=1 wmkhkn)

1/2. For Laplace distributed-data, wmk was
drawn from the gamma distribution with shape η+1 and unit
scale. Also, hkn was drawn from the beta distribution with
shapes α = η and β = 1. Using wmk and hkn, yCmn was
generated from the complex Gaussian distribution with zero
mean and the variance

∑K
k=1 wmkhkn. The shape parameter
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Fig. 3. Histograms of generated random data.

Fig. 4. The box plots of reconstruction qualities in fitting synthetic data.
Lower is better.

was set to η = 1/K and η = 3/(2K) for LKC (yCmn;λ = 1) and
Lexp
C (yCmn;λ = 1), respectively. We show the histograms of

Re[yCmn] of the generated data following the complex Laplace
distributions in Fig. 3.

In this simulation, the size of the observed matrix was
400 × 500, and the number of bases K was set to 5. We
constructed the observed matrix using |yCmn|δ . When δ = 1,
Laplace-NMF was compared with KL-NMF [1] and Cauchy-
NMF [13]. Moreover, when δ = 2, Gaussian-NMF [4] and
t-NMF [15] with ν = 2, 5 were used to compare. W and
H were initialized using random values. Then they were
updated 500 times. We used the naive multiplicative update
method [13] for Cauchy-NMF. For the others, we used the
MM algorithms. Each algorithm performed 100 trials using
20 initial values and 5 observed matrices. To evaluate data
fitting abilities, we used the mean squared error (MSE) defined
as MSE = 1

MN

∑
m,n(|yCmn|δ − ŷmn)2 and the mean of the

generalized KL divergence.
In Fig. 4, we show the performance indices. In this figure,

“MeanKLD” indicates the mean of the generalized KL diver-

Fig. 5. Evaluation results in semi-supervised denoising. Higher is better.

gence. When the random data follows the complex Laplace
distribution, the fitting abilities of Laplace-NMF are better
than those of Cauchy-NMF and t-NMF. However, the fitting
ability of Lexp

C -NMF deteriorates in fitting impulsive data. This
is because Lexp

C -NMF makes the approximations of outliers
using larger values.

B. Semi-supervised audio denoising

We evaluated performances of Laplace-NMF in semi-
supervised audio denoising. In this simulation, the source
signal was corrupted by the 0 [dB] of synthetic noise generated
using the procedure in Sect. IV-A.

To reduce noise, we utilized the semi-supervised NMF [23].
Our semi-supervised denoising procedure consisted of two
stages: the training and the denoising stages. In the training
stage, the NMF was applied to the silent period of the source
signal to obtain a basis matrix of noise Wn. Then, in the
denoising stage, we constructed the basis matrix W with a
basis matrix of source Ws as W = [Wn,Ws]. W and the
weight matrixH were learned from the observed spectrogram.
Ws and H were updated using the update rules for the NMF
while Wn was fixed. Using the generalized Wiener filter [24],
we estimated the source signal fromWs and the corresponding
rows of H .

For the source signal, we used 6 recordings played on
electric guitar in the IDMT-SMT-GUITAR database [25]. We
extracted AR_Lick[1-6]_KN.wav from this database. We
then resampled them to 11025 [Hz]. We obtained the complex
spectrograms of the source signal using the short-time Fourier
transform (STFT). For the STFT, the frame length was set to
512, the fast Fourier transform (FFT) length was 1024, and
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the hop size was 128. Before performing the FFT, the signal
was Hamming-windowed. The Nyquist frequency and the DC
components of the FFT spectra were excluded because they
do not follow any complex distributions.

In this simulation, the MM algorithm for Lévy-NMF [14]
was also used to compare. We performed each algorithm with
20 i.i.d. random initial values for Wn, Ws, and H and 5
i.i.d. noise signals. The numbers of bases were set to 5 and 10
for Wn and Ws, respectively. The numbers of iterations were
set to 500 and 700 for the training and the denoising stages,
respectively. We evaluated the denoising performances using
the improvement of the source-to-distortion ratio (SDR) [26].
The SDRs were calculated using “mir eval” [27] including
Python implementation of the BSS Eval Matlab toolbox [26].
The silent period used in the training stage is excluded for
evaluation.

The evaluation results are shown in Fig. 5. The perfor-
mances of NMF decomposing amplitude spectra are not out-
standing. This suggests that using amplitude spectra is not
effective for this task. In Fig. 5(a), t-NMF with ν = 5
demonstrates the best performance in terms of the median of
SDR improvement because the noise signal is impulsive and
generated from the Student’s t distribution. Nevertheless, as
shown in Figs. 5(b) and (c), when the noise signal follows
the complex Laplace distribution, Laplace-NMF with δ = 2
shows favorable performance in terms of the median of SDR
improvement.

V. CONCLUSIONS

In this paper, we have proposed two statistical models based
on the complex Laplace distributions. Also, the statistical
model of IS-NMF for amplitude spectra has been revealed.
Moreover, we have derived the optimization algorithms for
Laplace-NMF. Our experimental results have shown Laplace-
NMF provides promising performances in semi-supervised
audio denoising. Future works include investigating optimal
values of δ for Laplace-NMF and the audio denoising task.
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[12] U. Şimşekli, A. Liutkus, and A.T. Cemgil, “Alpha-stable matrix
factorization,” IEEE Signal Processing Letters, vol. 22, no. 12, pp.
2289–2293, Dec. 2015.

[13] A. Liutkus, D. FitzGerald, and R. Badeau, “Cauchy nonnegative
matrix factorization,” in Proc. 2015 IEEE International Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA),
Oct. 2015, pp. 1–5.

[14] P. Magron, R. Badeau, and A. Liutkus, “Lévy NMF for robust
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