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Abstract—Sub-THz communications based on coherent re-
ceivers suffer from strong phase impairments issued by oscil-
lators. Envelope detection, inherently robust to this impairment,
is hence considered for the design of sub-THz systems. This paper
proposes an algebraic framework for envelope modulation. In the
first place, we introduce a Hilbert space to represent waveforms
with non-negative real values. This space is defined by transport
of structure of the usual signal-space L2. So, existing schemes
developed for real-valued signals can be exploited upon envelope
modulation. In the second place, it is shown that the proposed
framework provides powerful tools to design new envelope mod-
ulation schemes. To do so, we present the transmission of an In-
phase Quadrature signal upon an envelope modulation to prevent
the impact of phase noise on communication performance. We
also demonstrate that constraints on embedded analog-to-digital
converters can be relaxed with the use of orthogonal non-negative
waveforms.

Index Terms—Sub-THz communications, Amplitude modula-
tion, Envelope detectors, Linear algebra, Hilbert space.

I. INTRODUCTION

Context & motivations: Wireless communications within the
sub-THz spectrum (100-300 GHz) are contemplated to face the
exponential data traffic growth [1]. The sub-THz spectrum of-
fers unprecedentedly large bands, yet it involves severe radio-
frequency impairments that must be mitigated. In particular,
sub-THz communications suffer from strong phase impair-
ments issued by oscillators: phase noise, carrier frequency
offset [2]. Researches have either addressed compensation of
phase impairments [3] or signal processing optimization [4]
[5] to enable the development of coherent sub-THz systems.
In contrast, non-coherent schemes have long been exploited,
e.g. On-Off Keying (OOK) at 260 GHz in 2012 [6], for
they achieve robustness with low complexity. Indeed, envelope
detection is inherently robust to phase impairments. It is hence
a valuable scheme to perform frequency translation within
sub-THz receivers. Subsequently, it is relevant to consider the
design of sub-THz communications systems based on envelope
modulation and detection.

Literature: Signal-spaces L2 and `2 are usually used for
communication design [7]. They provide powerful analytical
tools for real and complex valued signals and have lead to the
design of performant systems. Though they are not particularly
well-suited to describe non-negative signals, these spaces have
also been exploited to develop envelope modulation schemes.
For instance, the digital modulation techniques used in vis-
ible light communications exploit non-negative waveforms:
e.g. OOK, Pulse Position Modulation (PPM), etc [8]. To
the best of our knowledge, the development of an algebraic
framework dedicated to digital envelope modulation has not
been addressed by the literature. This prompts us to define
an appropriate Hilbert space for non-negative real valued
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Fig. 1: Frequency translation performed with envelope modu-
lation and detection.

waveforms in order to enable the design of efficient envelope
modulation schemes adapted to sub-THz communications.

Contributions: In this paper, we propose an algebraic frame-
work for envelope modulation. In the first place, we introduce
a Hilbert space to represent waveforms with non-negative real
values. This enables to redefine fundamental properties and
operators for non-negative signals: orthogonality, projection,
etc. Nonetheless, we also desire to exploit existing schemes
developed for real signals. Therefore, the introduced Hilbert
space is defined by transport of structure of signal-space L2. In
the second place, we show that the proposed framework pro-
vides efficient tools to design envelope modulation schemes.
We hence study the transmission of an In-phase Quadrature
(IQ) signal upon an envelope modulation to prevent the impact
of phase noise on communication performance. Further, it is
demonstrated that constraints on embedded Analog-to-Digital
Converters (ADC) may be relaxed with the use of orthogonal
non-negative waveforms.

Organization: The paper is organized as follows. The sys-
tem model is described in Sec. II. We introduce in Sec. III the
algebraic framework for envelope modulation. Sec. IV presents
potential applications of the proposed framework to sub-THz
communications. Eventually, Sec. V concludes the paper.

II. SYSTEM MODEL

A. Communication system
Sub-THz systems based on coherent receivers suffer from

severe phase impairments issued by oscillators [2]. Envelope
detection is thus relevant to perform frequency translation
without phase impairments. In addition, envelope modulation
allows an efficient use of power amplifiers [9]. For these
reasons, we consider a communication system based on en-
velope modulation and detection as depicted in Fig. 1. At the
transmitter, the band-limited modulating signal is denoted s
and lies in R≥0 = {s(t) ∈ R, s(t) ≥ 0}. The transmitted
signal at carrier frequency fc is then expressed by

sfc(t) = s(t) cos(2πfct+ φ(t)), (1)
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Fig. 2: Illustration of the non-negative channel.

where φ represents the oscillator phase noise. At the receiver,
the down frequency translation is realized by an envelope
detector. Typically, envelope detectors rely on a self-mixer
combined with a low-pass filter. First, multiplying the signal
by itself yields

sfc(t)2 = s(t)2 · 1 + cos(4πfct+ 2φ(t))

2
. (2)

Then, it is sufficient to filer images at 2fc and take the square
root in order to recover the signal of interest s. The details
on the implementation of envelope detectors exceed the scope
of this study though. It is hence assumed that the detector
perfectly demodulates the envelope s of the received signal
sfc .

B. Channel
It has been recently confirmed by measurement campaigns

[10] that the line-of-sight component prevails in sub-THz
channels. We hence study a waveform corrupted by an Addi-
tive White Gaussian Noise (AWGN). The channel is assumed
to be equalized and the receiver synchronized. The received
signal is given by

r(t) = |s(t) + w(t)| , t ∈ R, (3)

where w is a zero-mean real Gaussian process with spectral
density 2σ2

w. The noise w is filtered at the input of the
envelope detector and is hence band-limited. Hereafter, we
will refer to Eq. (3) as the Non-Negative Channel (NNC). It
also meaningful to introduce the discrete-time model of the
NNC where the received symbol at instant k is expressed by

rk = |sk + wk| , k ∈ N, (4)

where sk is the k-th positive real-valued symbol modulated
with duration T and wk ∼ N (0, σ2

w/T ).

III. ALGEBRAIC FRAMEWORK

A. Stakes
Hilbert spaces provide an efficient framework for the de-

velopment of communication systems. Linear signal analysis,
processing and reconstruction are entirely developed upon the
properties of Hilbert spaces. For instance, optimal filtering
exploits the concept of orthogonality, meanwhile the projection
theorem is used in approximation problems. Nonetheless, con-
ventional algebraic structures are primarily designed for real-
valued signals and are not well-suited to envelope modulation.
By means of example, it is difficult for a set of non-negative
signals to be orthogonal with the usual inner product of real
functions. A common set of orthogonal signals with non-
negative values is the set of pulses with different positions in
time. This set is exploited in the PPM but requires a precise
synchronization between the transmitter and the receiver. In
contrast, we intend in this work to define an algebraic frame-
work that could enable the design of new envelope modulation

schemes adapted to sub-THz communications. To do so, non-
negative waveforms, whose values lies in R≥0, are represented
within a Hilbert space. This space is denoted Hρ for continu-
ous waveforms and hρ for discrete signals. Moreover, we also
desire to exploit the signal processing techniques developed for
real-valued signals. Therefore, the Hilbert space Hρ is defined
by transport of structure of the signal-space L2 – or `2 in
the discrete case. The transport of structure Φ : L2 → Hρ

relies on a bicontinuous function Φ in order to bond real-
valued waveforms to non-negative ones. The use of map Φ
in the NNC is depicted in Fig. 2. Here and subsequently, we
write L2 the Hilbert space

(
L2([0, T ]), 〈·, ·〉

)
, the set of square-

integrable functions with domain [0, T ] equipped with 〈·, ·〉 the
usual inner product of real functions. Similarly, `2 denotes the
Hilbert space of square-summable sequence. We first present
the transport of structure of Hilbert spaces and then detail the
definition of Hρ.

B. Transport of structure and Hilbert spaces
1) From vector space V1 to V2: We first consider two sets

S1, S2 and a homeomorphism Φ : S1 → S2. Further, the set
S1 equipped with vector addition + and scalar multiplication
× over the field F defines a vector space V1 = (S1,+,×).
We next study V2 = (S2,⊕,⊗) the set S2 equipped with the
vector addition ⊕ and the scalar multiplication ⊗ over field
F defined as follows. Set u1, v1 ∈ V1 and λ ∈ F . We denote
u2 = Φ(u1), v2 = Φ(v1) ∈ V2, then the vector addition is
defined by

u2 ⊕ v2 = Φ
(
Φ−1(u2) + Φ−1(v2)

)
= Φ(u1 + v1), (5)

and the scalar multiplication by

λ⊗ u2 = Φ
(
λ× Φ−1(u2)

)
= Φ(λ× u1). (6)

Proposition 1. V2 = (S2,⊕,⊗) is a vector space over the
field F .

Proof: Proposition 1 is easily proven by showing that V2
satisfies the eight axioms of a vector space.

2) From Hilbert space H1 to H2: Let the inner product
〈·, ·〉1 : V1 × V1 → F such that H1 = (V1, 〈·, ·〉1) is a
Hilbert space. Subsequently, the set S1 is a complete metric
space when equipped with the distance induced from the inner
product d1(u1, v1) =

√
〈u1 − v1, u1 − v1〉1. We next evaluate

H2 = (V2, 〈·, ·〉2), where the map 〈·, ·〉2 : V2 × V2 → F is
defined by

〈u2, v2〉2 = 〈Φ−1(u2),Φ−1(v2)〉1 = 〈u1, v1〉1. (7)

Proposition 2. H2 = (V2, 〈·, ·〉2) is an inner product space.

Proof: Proposition 2 is easily proven by showing that H2

satisfies the three axioms of an inner product space.
It is worth mentioning that H2 defines a norm ‖·‖2 and a

metric d2(·, ·) upon its inner product expressed by:

‖u2‖2 =
√
〈u2, u2〉2, (8)

d2(u2, v2) =
√
〈u2 ⊕ ¬v2, u2 ⊕ ¬v2〉2, (9)

where ¬v2 stands for the opposite of vector v2.

Proposition 3. H2 = (V2, 〈·, ·〉2) is a Hilbert space.
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Proof: To prove that H2 = (V2, 〈·, ·〉2) is a Hilbert
space, it is sufficient to show that (S2, d2) is a complete
metric space since (V2, 〈·, ·〉2) is already proved to be an inner
product space. To do so, we exploit the property that (S2, d2)
and (S1, d1) are isometric. Isometry preserves completeness -
more precisely, uniformly continuous function maps Cauchy
sequences into Cauchy sequences - and (S1, d1) is known to
be complete. It follows immediately that (S2, d2) is a complete
metric space.

3) Properties of transport of structure: Such definition of
H2 upon H1 is referred to as a transport of structure whose
properties are listed below.

Theorem 1. Let the transport of structure Φ : H1 → H2, then
the following properties are sastified:

1) Φ is surjective and preserves the inner product.
2) Φ is surjective and isometric.
3) Φ maps an orthonormal basis for H1 into an orthonormal

basis for H2.

Proof: We first recall that H2 is defined such that Φ is
surjective and preserves the inner product. Therefore, property
1) is satisfied and the other properties follow easily. This
theorem may also be demonstrated from the observation that
Φ : H1 → H2 is a bounded linear operator by definition of
H2. For a deeper discussion of operators on Hilbert spaces,
we refer the reader to [11].

C. Definition of envelope Hilbert space Hρ

We will now use the previously described results on trans-
port of structure of Hilbert spaces to define an algebraic frame-
work for envelope modulation. As aforementioned, we also
desire to rely on conventional Hilbert space L2. Subsequently,
we have

Φ : L2 → Hρ,

: x(t) 7→ s(t),
(10)

where x is a real-valued waveform. To ensure the sound-
ness of envelope modulation, Φ is subject to the fol-
lowing constraint: the image of x must be non-negative
i.e. Φ : x(t) 7→ s(t) ∈ R≥0. As an illustration, an offset may
be sufficient to map a real-valued waveform onto the non-
negative real space. This could also be achieved with the exp
function, for instance. The Hilbert space Hρ = (Vρ, 〈·, ·〉ρ)
is defined by vector space Vρ and inner product 〈·, ·〉ρ. The
vector space Vρ denotes the set Φ(L2([0, T ])) equipped with
vector addition ⊕ and scalar multiplication ⊗ over the field
R defined by Eq. (5) and (6). Furthermore, the inner product
〈·, ·〉ρ on vector space Vρ is defined from Φ and the usual
inner product of real functions 〈·, ·〉 by Eq. (7). It is worth
mentioning that Hilbert space Hρ can be extended to higher
dimensions by Cartesian product. It is sufficient to define
vector space operations component-wise and to set the inner
product as the sum of the inner products associated to the
different components. As represented in Fig. 2, the NNC may
also be expressed by

y(t) = Φ−1
(∣∣Φ
(
x(t)

)
+ w(t)

∣∣) , (11)

where x and y are real-valued signals.

In a similar manner to the definition of Hρ upon L2 for
continuous waveforms, the envelope Hilbert space hρ for
discrete signals is defined upon `2. Due to space limitation,
this is not detailed here.

D. Orthonormal sequences in Hρ

Orthonormal sequences play an important role in commu-
nication systems to design orthogonal code modulation or
multiplexing schemes. We here introduce them in the context
of Hρ. A set ψ = {ψn}1≤n≤N of N vectors in Hρ is
orthonormal if it satisfies ∀n1, n2, 〈ψn1 , ψn2〉ρ = δn1n2 . Then,
the synthesis operator refers to the linear isomorphism from
RN onto Hρ defined by

ϕ : λ 7→ u = λ1 ⊗ ψ1 ⊕ · · · ⊕ λN ⊗ ψN , (12)

where u ∈ Hρ and λ = (λ1, · · · , λN ) ∈ RN . We may also use
the notation u = (λ)ψ to define a vector u by its coordinates
λ relatively to ψ. Conversely, given a vector u ∈ Hρ the
analysis operator is the inverse map ϕ−1 : Hρ → RN that
evaluates coordinates λ of u w.r.t. ψ. By orthonormality of
ψ, we have

λn = 〈u, ψn〉ρ. (13)

Theorem 1 gives that a sequence ψ is orthonormal in Hρ if
and only if the sequence ψ̄ = Φ−1(ψ) is orthonormal in L2.
Accordingly, any orthonormal sequence in L2 can be exploited
upon envelope modulation with an appropriate map Φ. In
contrast to the aforementioned example on PPM, this result
entails that new orthogonal code modulation or multiplexing
schemes can be designed with non-negative waveforms.

IV. APPLICATIONS

The objective of this section is to give the reader some
application examples. In particular, it aims to illustrate that the
proposed framework enables the design of efficient envelope
modulation schemes adapted to sub-THz communications.
Subsequently, the focus is neither on the thorough performance
evaluation of the described systems nor on the details of their
implementations.

A. Transmission of an IQ signal upon envelope modulation

IQ architectures are a predominant implementation for wire-
less communications. Though it is a mature technology, it is
highly sensitive to phase noise. We desire to benefit from this
maturity, and still, achieve robustness for sub-THz systems.
Therefore, we investigate the transmission of an IQ signal upon
an envelope modulation. The considered system is depicted in
Fig. 3. The IQ signal is expressed by

x(t) = xI(t) cos (2πfi · t)− xQ(t) sin (2πfi · t) , (14)

with fi the intermediate frequency. The pulse shaping of
quadrature signals xI and xQ is performed with rectangular
function, i.e.

xI(t) =
∑

k

xI,k ·Π(t− kT ),

xQ(t) =
∑

k

xQ,k ·Π(t− kT ),
(15)
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Fig. 3: Transmission of an IQ signal with envelope modulation.

TABLE I: Performance loss in SNR to achieve BER= 10−6

induced by the described envelope modulation.

Modulation 4-QAM 16-QAM 64-QAM
∆SNR(dB) 5.52 6.65 7.48

where xI,k = <(xk), xQ,k = =(xk) and xk is k-th complex
modulated symbol. The signal x is mapped to s ∈ Hρ with
function Φ. By means of example, we consider

Φ : x(t) 7→ s(t) = arctan (x(t)) + ν. (16)

where ν is the appropriate offset ensuring that s is positive.
Signal s modulates the envelope of the transmitted signal1
around fc + fi over the NNC. By Eq. (11), the demodulated
signal is expressed by

y(t) = tan (r(t)− ν) . (17)

With regard to the continuity of the tan function, values of
r greater than π/2 + ν must be truncated. Quadrature signals
yI and yQ are next obtained by projecting y respectively onto
cos and sin. For the in-phase component, that is

yI(t) =

∫

T

y(t) · cos (2πfi · t) dt, (18)

Symbols are estimated by sampling these signals every kT
time instants:

x̂I,k = yI(kT ), x̂Q,k = yQ(kT ). (19)

Table I outlines the performance loss induced by the use
of this envelope modulation to transmit an IQ signal. The
simulated results presents the difference in Signal-to-Noise
Ratio (SNR) to achieve a Bit-Error Rate (BER) of 10−6

between the described envelope modulation and a coherent IQ
transceiver. Simulations are performed with an IQ signal based
on Quadrature-Amplitude-Modulation (QAM) constellations.
Though these performance loss may be considered significant,
they do not question the relevance of the introduced framework
for sub-THz communications. Indeed, sub-THz systems lie in
a different paradigm where the critical deterioration is the
phase impairments. Besides, it has been shown in [5] that
the impact of phase noise on a coherent transmission is not a
performance loss in terms of SNR but causes the BER to reach
an error floor. In contrast, the presented transmission of an
IQ signal over envelope modulation may achieve any targeted
BER. Therefore, in comparison to a communication system

1The image at fc−fi can be filtered in order to transmit a single-sideband
signal.

| · |
∫
T

ADC
T x̂kPA

fc

DAC
T

xk

{0, 1}

Fig. 4: Illustration of a serial OOK transceiver

impacted by phase noise, this scheme appears to be relevant
for sub-THz applications. Eventually, these performance losses
are only valid for the considered map Φ, unoptimized. We
have outlined this specific envelope modulation to illustrate the
potential applications of the proposed framework to sub-THz
communications, yet some other functions Φ may be designed
to achieve better performance.

B. Relaxing constraints on embedded ADC

One of the contemplated applications for the sub-THz
communications is the kiosk scenario [12]: A short-range hot-
spot supplies users with a high data-rate down-link. Receivers
architectures must remain simple in order to be embedded
into users’ terminals. Even if low complexity schemes are
implemented, e.g. OOK, it is difficult for embedded ADC to
sample several GHz of band. Our objective is therefore to relax
the constraints on ADC. We show that the sampling rate of
ADC can be made twice slower by multiplexing symbols on
two orthogonal non-negative waveforms

Let us first describe a transceiver with a serial architecture
as represented in Fig. 4. The studied modulation is an OOK2.
Symbols xk ∈ {0, 1} are transmitted on the NNC described in
Eq. (3) with a rectangular pulse shaping, i.e. s(t) =

∑
k xk ·

Π(t − kT ). The receiver estimates symbols x̂k by sampling
every kT time-instants the signal r(t) ∗ Π(t) as illustrated in
Fig. 4. In this case, the sampling rate of the ADC is equal to
the symbol rate.

Conversely, we now present an architecture where
the receiver is parallelized. Modulating symbols x =
(x2k, x2k+1) ∈ {0, 1}2 are mapped onto an orthogonal se-
quence ψ composed of vectors ψ1,ψ2 ∈ h2ρ. The transmitted
symbols s = (s2k, s2k+1) are defined by

s = (x)ψ. (20)

By way of illustration, we consider ψ to be the image of
Hadamard code ψ̄ = {(1, 1), (1,−1)} by map Φ(x) = x+ 1.

2The presented multiplexing may also be exploited with any modulation.
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Fig. 5: Illustration of a parallel OOK transceiver.

At the transmitter, mapping from x to s is achieved by the
synthesis operator introduced in Eq. (12)

s = x2k ⊗ψ1 ⊕ x2k+1 ⊗ψ2,

= Φ(x2k + x2k+1, x2k − x2k+1).
(21)

The transmitter keeps a serial architecture, yet it no longer
sends xk ∈ {0, 1} but sk ∈ {0, 1, 2, 3}. Incidentally, complex-
ity in the base station is not an issue in the considered scenario.
Moreover, it is easier to realize Digital-to-Analog Converters
(DAC) with high sampling rates than ADC. At the receiver,
symbols may be estimated from the received sequence r by
the analysis operator defined in Eq. (13)

x̂2k = 〈r,ψ1〉ρ, x̂2k+1 = 〈r,ψ2〉ρ. (22)

Nonetheless, this may also be realized within the continuous
time domain since a Hadamard code may actually be regarded
as the DFT on the two-element additive group Z/(2). This re-
quires first to evaluate y(t) = Φ−1(r(t)) and second to project
y onto two signals, one constant and the other oscillating with
frequency 1/2T . As depicted in Fig. 5, these projections are
expressed by

y1(t) =

∫

2T

y(t)dt, (23)

y2(t) =

∫

2T

y(t) · π
2

sin

(
2π

2T
t

)
dt. (24)

The receiver finally obtains symbol estimates by sampling
these signals every 2kT time instants, i.e.

x̂2k = y1(2kT ), x̂2k+1 = y2(2kT ). (25)

This achieves the desired objective. For a fixed symbol
rate, the receiver demodulates the symbols based on ADC
whose sampling rates are twice slower. Furthermore, this can
be easily extended to N orthogonal non-negative waveforms,
and thus, to systems with N times slower ADC. Still, it is
straightforward to show that the presented multiplexing entails

a performance loss in SNR (' 4.77 dB). However, this scheme
is unoptimized and could be improved. We have presented it in
order to illustrate the potential applications of the introduced
framework to sub-THz communications.

C. Perspectives
This paper is an introductory work proposing an analytical

framework for digital envelope modulation. It should hence
be followed by an investigation of performant digital envelope
modulation techniques for sub-THz systems. Furthermore, it is
worth mentioning that the introduced framework represents a
first step in describing analytically polar transceivers [9] where
the phase and the amplitude are modulated separately.

V. CONCLUSION

In this paper we have proposed an algebraic framework
for envelope modulation. Non-negative real waveforms have
been represented within an appropriate Hilbert space. This
space is defined by transport of structure of the usual signal-
space L2 which enables to exploit existing schemes developed
for real-valued waveforms upon envelope modulation. It is
further shown that the introduced framework may be used
to design efficient envelope modulation schemes for sub-THz
communications. By way of illustration, we have studied the
transmission of an IQ signal with an envelope modulation to
prevent the impact of phase noise. We have also demonstrated
that the constraints on embedded ADC may be relaxed with
the use of orthogonal non-negative waveforms.
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