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Abstract—In this paper, we propose a possibly nonconvex
optimization problem to reconstruct a discrete-valued vector
from its underdetermined linear measurements. The proposed
sum of sparse regularizers (SSR) optimization uses the sum of
sparse regularizers as a regularizer for the discrete-valued vector.
We also propose two proximal splitting algorithms for the SSR
optimization problem on the basis of alternating direction method
of multipliers (ADMM) and primal-dual splitting (PDS). The
ADMM based algorithm can achieve faster convergence, whereas
the PDS based algorithm does not require the computation of any
inverse matrix. Moreover, we extend the ADMM based approach
for the reconstruction of complex discrete-valued vectors. Note
that the proposed approach can use any sparse regularizer as
long as its proximity operator can be efficiently computed. Sim-
ulation results show that the proposed algorithms with nonconvex
regularizers can achieve good reconstruction performance.

Index Terms—Discrete-valued vector reconstruction, noncon-
vex optimization, alternating direction method of multipliers,
primal-dual splitting.

I. INTRODUCTION

Discrete-valued vector reconstruction from its linear mea-
surements is a common problem in signal processing for
communications systems, e.g., multiple-input multiple-output
(MIMO) signal detection [1]–[3] and multiuser detection in
machine-to-machine communications [4]. Especially in un-
derdetermined cases, where the number of measurements is
less than that of unknown variables, the performance of linear
reconstruction methods is severely degraded. Although the
maximum likelihood approach can achieve excellent perfor-
mance, it requires huge computational complexity in large-
scale problems. Possible candidates of the low-complexity
method are some message passing approaches [5]–[7], which
can utilize the discreteness of the unknown vector effectively.
However, since they require some assumptions on the mea-
surement matrix, the performance may degrade for general
measurement matrices. Other low-complexity approaches have
been proposed on the basis of convex optimization [8]–
[10]. These optimization problems also take advantage of the
discrete nature of the unknown vector as a prior knowledge.
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However, since all these methods consider convex optimiza-
tion problems obtained by convex relaxation techniques, the
discreteness has not been taken full advantage of.

In this paper, to obtain better reconstruction performance
without any explicit assumption on the measurement matrix,
we propose a possibly nonconvex optimization problem named
sum of sparse regularizers (SSR) optimization. By using the
discreteness of the unknown vector and the idea of compressed
sensing [11], [12], we utilize the sum of some sparse regu-
larizers as a regularizer for the discrete-valued vector in the
proposed SSR optimization. The SSR optimization can be
considered as a generalization of the sum of absolute values
(SOAV) optimization [10], [13]–[17], and is equivalent to the
SOAV optimization when we use the convex ℓ1 norm as the
sparse regularizer. Other than the ℓ1 norm, we can also use
nonconvex regularizers such as the ℓp norm (0 < p < 1) [18]–
[22], the ℓ0 norm, and the ℓ1 − ℓ2 difference [23], [24]. For
the SSR optimization, we propose an algorithm on the basis
of alternating direction method of multipliers (ADMM) [25]–
[28], which is known to achieve fast convergence in general,
regardless of the convexity of the cost function. However,
the ADMM based algorithm involves the computation of an
inverse matrix, which may require prohibitive computational
complexity in very large-scale problems. We thus also propose
a primal-dual splitting (PDS) [29], [30] based algorithm, which
can avoid the computation of the inverse matrix. Moreover, we
extend the proposed approach to the reconstruction of discrete-
valued vectors in the complex domain, which commonly
emerges in the filed of communications. Simulation results
show that the proposed algorithms with nonconvex regularizers
can achieve better performance than that with the convex
ℓ1 regularizer, which corresponds to the conventional SOAV
optimization.

In the rest of the paper, we use the following notations. R
is the set of all real numbers and C is the set of all complex
numbers. We represent the transpose by (·)T, the Hermitian
transpose by (·)H, the imaginary unit by j, the N×N identity
matrix by IN , the vector whose elements are all 1 by 1, and
the vector whose elements are all 0 by 0. Re{·} and Im{·}
denote the real part and the imaginary part, respectively. For
a lower semicontinuous function ϕ : KN → R∪{∞} (K = R
or C), the proximity operator of ϕ(·) is defined as proxϕ(u) =

arg min s∈KN

{
ϕ(s) +

1

2
∥s− u∥22

}
.

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



II. PROBLEM STATEMENT

We consider the reconstruction of a discrete-valued vector
x = [x1 · · · xN ]

T ∈ RN ⊂ RN from its underdetermined
linear measurement given by y = Ax + v ∈ RM , where
M < N . Here, R = {r1, . . . , rL} is the set of possible values
that the elements of the unknown vector x take, where L ≪
N . The distribution of xn is assumed to be known and given
by Pr (xn = rℓ) = pℓ (ℓ = 1, . . . , L), where

∑L
ℓ=1 pℓ = 1.

A ∈ RM×N is a measurement matrix and v ∈ RM is an
additive noise vector. In MIMO signal detection [1]–[3], for
example, N , M , and L correspond to the number of transmit
antennas, the number of receive antennas, and the constellation
size, respectively.

III. PROPOSED SSR OPTIMIZATION PROBLEM

For the reconstruction of x from y and A, we propose the
SSR optimization problem

minimize
s∈RN

{
L∑

ℓ=1

qℓhℓ (s− rℓ1) +
λ

2
∥y −As∥22

}
, (1)

where λ (> 0) is the regularization parameter and
∑L

ℓ=1 qℓ =
1 (qℓ ≥ 0). The function hℓ(·) is a sparse regularizer and
we assume that its proximity operator can be computed
efficiently. The employment of sparse regularizers in the SSR
optimization is based on the fact that the vector x− rℓ1 has
some zero elements, which has been utilized in the SOAV
optimization [10]. We can thus consider

∑L
ℓ=1 qℓhℓ (s− rℓ1)

in the objective function as a regularizer for discrete-valued
vectors in RN .

We show some examples of the sparse regularizer hℓ(·) and
the corresponding proximity operators, which are required for
the proposed algorithms in Section IV. Note that we consider
both convex and nonconvex regularizers in this paper, and we
can use any sparse regularizer as far as its proximity operator
can be computed.

Example 1 (ℓ1 Norm). For the ℓ1 norm based regularizer
h(1)(u) = ∥u∥1 =

∑N
n=1 |un| (u = [u1 · · · uN ]

T ∈
RN ), the proximity operator proxγh(1)(·) is given by[
proxγh(1)(u)

]
n

= sign(un)max (|un| − γ, 0), where [·]n
denotes the nth element of the vector and sign(·) is the sign
function. The SSR optimization with the ℓ1 regularizer is
equivalent to the SOAV optimization [10].

Example 2 (ℓ0 Norm). The nonconvex regularizer h(0)(u) =
∥u∥0 based on the ℓ0 norm, i.e., the number of nonzero
elements of u, has the proximity operator given by[
proxγh(0)(u)

]
n
= 0 when |un| <

√
2γ,

[
proxγh(0)(u)

]
n
=

{0, un} when |un| =
√
2γ, and

[
proxγh(0)(u)

]
n
= un when

|un| >
√
2γ (n = 1, . . . , N ).

Example 3 (ℓp Norm (0 < p < 1)). We also consider the
nonconvex regularizer h(p)(u) = ∥u∥pp =

∑N
n=1 |un|p with

the ℓp norm (0 < p < 1). In Fig. 1, we compare the
regularizer (h(p)(s + 1) + h(p)(s − 1))/2 in the binary case
with R = {−1, 1} for different values of p. From the figure,
we can see that the sums of nonconvex regularizers with

Fig. 1: (h(s+ 1) + h(s− 1))/2 Fig. 2: proxγh(u) (γ = 0.5)

h(1/2)(·) and h(2/3)(·) can promote the discrete nature more
effectively compared to the convex one with h(1)(·), because
the sums of nonconvex regularizers do not have their minimum
values for s ∈ (−1, 1) but only for s = ±1. The proximity
operator of the ℓp norm based regularizers has been discussed
in [19]–[21]. For arbitrary p ∈ (0, 1), we can numerically
compute the proximity operator, while the proximity operator
for p = 1/2, 2/3 can be written explicitly. Figure 2 shows
the proximity operators of γh(1)(·), γh(2/3)(·), γh(1/2)(·),
and γh(0)(·) (γ = 0.5). As we can see from the figure,
the proximity operators of the nonconvex regularizers are not
continuous.
Example 4 (ℓ1 − ℓ2 Difference). The nonconvex regularizer
h(1−2)(u) = ∥u∥1 − ∥u∥2 based on the ℓ1 − ℓ2 difference
has been proposed for compressed sensing [23], [24]. The
proximity operator of h(1−2)(·) can be computed with Lemma
1 in [24] or Proposition 7.1 in [31].

IV. PROXIMAL SPLITTING ALGORITHMS
FOR SSR OPTIMIZATION

A. ADMM Based Algorithm

We can rewrite the optimization problem of the SSR opti-
mization (1) with new variables z1, . . . , zL ∈ RN as

minimize
s,z1,...,zL∈RN

{
L∑

ℓ=1

qℓhℓ (zℓ − rℓ1) +
λ

2
∥y −As∥22

}
subject to s = zℓ (ℓ = 1, . . . , L), (2)

which is further rewritten as

minimize
s∈RN ,z∈RLN

{f(s) + g(z)} subject to Φs = z. (3)

Here, z =
[
zT
1 · · · zT

L

]T ∈ RLN , Φ = [IN · · · IN ]
T,

f(s) = λ
2 ∥y −As∥22, and g(z) =

∑L
ℓ=1 qℓhℓ (zℓ − rℓ1).

We derive the proposed algorithm based on ADMM. The
update equations of ADMM for (3) are given by

sk+1 = arg min
s∈CN

{
f (s) +

ρ

2

∥∥Φs− zk +wk
∥∥2
2

}
, (4)

zk+1 = arg min
z∈CLN

{
g (z) +

ρ

2

∥∥Φsk+1 − z +wk
∥∥2
2

}
, (5)

wk+1 = wk +Φsk+1 − zk+1, (6)

where k is the iteration index, ρ (> 0) is a parameter, and

wk ∈ RLN . From
∂

∂sT

{
f(s) +

ρ

2

∥∥Φs− zk +wk
∥∥2
2

}
=
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Algorithm 1 ADMM-SSR: ADMM Based Algorithm for (1)

Input: y ∈ RM ,A ∈ RM×N

Output: x̂ ∈ RN

1: Fix ρ > 0, z0 ∈ RNL, and w0 ∈ RNL

2: for k = 0 to K − 1 do
3: sk+1 =

(
ρLIN + λATA

)−1

·
(
ρ
∑L

ℓ=1

(
zk
ℓ −wk

ℓ

)
+ λATy

)
4: zk+1

ℓ = rℓ1+ prox qℓ
ρ hℓ

(
sk+1 +wk

ℓ − rℓ1
)

(ℓ = 1, . . . , L)
5: wk+1

ℓ = wk
ℓ + sk+1 − zk+1

ℓ (ℓ = 1, . . . , L)
6: end for
7: x̂ = Q(sK)

0, the update of sk in (4) can be written as sk+1 =(
ρLIN + λATA

)−1
(
ρ
∑L

ℓ=1

(
zk
ℓ −wk

ℓ

)
+ λATy

)
, where

zk
ℓ ∈ RN and wk

ℓ ∈ RN (ℓ = 1, . . . , L) are subvectors

of zk =
[
zk
1
T · · · zk

L

T
]T

and wk =
[
wk

1
T · · · wk

L

T
]T

,
respectively. The update of zk in (5) can be written as

zk+1 = prox 1
ρ g

(
Φsk+1 +wk

)
(7)

=


r11+ prox q1

ρ h1

(
sk+1 +wk

1 − r11
)

...
rL1+ prox qL

ρ hL

(
sk+1 +wk

L − rL1
)
 , (8)

because the function g(·) is separable as g (z) =∑L
ℓ=1 qℓhℓ (zℓ − rℓ1). We also use the property of proximity

operator for translation [27] in (8).
We summarize the ADMM based algorithm for the SSR

optimization (1) as ADMM-SSR in Algorithm 1, where Q(·)
denotes the element-wise quantization operator which maps
the input to its nearest value in R. One of the advantages
of ADMM-SSR is that we do not require the proximity
operator of the whole regularizer

∑L
ℓ=1 qℓhℓ (s− rℓ1) and

we can implement ADMM-SSR as long as the proximity
operator of hℓ(·) can be calculated as in Examples 1–4.
The computational complexity is dominated by the inverse
matrix

(
ρLIN + λATA

)−1
, which usually requires O(N3)

complexity [32, Ch. 11].

B. PDS Based Algorithm

As we have mentioned in the previous subsection, ADMM-
SSR requires the computation of the inverse matrix, which
may require prohibitive computational complexity for very
large-scale problems. To overcome this problem, we also
propose an algorithm based on primal-dual splitting [30],
which can avoid the computation of the inverse matrix.

We first rewrite the SSR optimization problem (1) as

minimize
s∈RN

{f(s) + g(Φs)} , (9)

Algorithm 2 PDS-SSR: PDS Based Algorithm for (1)

Input: y ∈ RM ,A ∈ RM×N

Output: x̂ ∈ RN

1: Fix ρ1 > 0, ρ2 > 0, s0 ∈ RN , and w0 ∈ RNL

2: for k = 0 to K − 1 do
3: sk+1 = sk − ρ1

(
λAT

(
Ask − y

)
+

∑L
ℓ=1 w

k
ℓ

)
4: zk+1

ℓ = wk
ℓ + ρ2

(
2sk+1 − sk

)
(ℓ = 1, . . . , L)

5: wk+1
ℓ = zk+1

ℓ − ρ2

(
rℓ1+ prox qℓ

ρ2
hℓ

(
zk+1
ℓ

ρ2
− rℓ1

))
(ℓ = 1, . . . , L)

6: end for
7: x̂ = Q(sK)

where f(·) and g(·) are defined below (3). PDS is applicable
to the problem of the form (9) and is given by

sk+1 = sk − ρ1
(
∇f

(
sk

)
+ΦTwk

)
, (10)

zk+1 = wk + ρ2Φ
(
2sk+1 − sk

)
, (11)

wk+1 = proxρ2g∗

(
zk+1

)
, (12)

where ρ1, ρ2 (> 0) are the parameters, ∇f(·) denotes the
gradient of the function f(·), and g∗(·) represents the convex
conjugate of g(·). The update of sk in (10) can be written
as sk+1 = sk − ρ1

(
λAT

(
Ask − y

)
+

∑L
ℓ=1 w

k
ℓ

)
because

∇f(s) = λAT (As− y). The proximity operator proxρ2g∗(·)
in (12) is expressed as proxρ2g∗(u) = u−ρ2proxg/ρ2

(u/ρ2).
Hence, from (8) and (12), we can update wk+1

ℓ as wk+1
ℓ =

zk+1
ℓ − ρ2

(
rℓ1+ prox qℓ

ρ2
hℓ

(
zk+1
ℓ

ρ2
− rℓ1

))
.

We summarize the PDS based algorithm named PDS-SSR in
Algorithm 2. As is the case with ADMM-SSR, PDS-SSR also
requires only the proximity operator of hℓ(·). Since PDS-SSR
computes only the addition of vectors and the multiplication
of a matrix and a vector, it requires O(MN) complexity [32,
Ch. 6], which is lower than that of ADMM-SSR.

C. Convergence of Proposed Algorithms

The convergence of the proposed algorithms depends
on the convexity of the sparse regularizer hℓ(·). When
h1(·), . . . , hL(·) are all convex, the objective function of the
SSR optimization is also convex. In this case, the sequence{
sk

}
obtained by ADMM-SSR converges to the optimizer

of the problem from the general result for ADMM [26].
From Theorem 3.1 in [30], the sequence

{
sk

}
obtained by

PDS-SSR also converges if the parameters ρ1 and ρ2 satisfy
1/ρ1 − ρ2L ≥ λ

∥∥ATA
∥∥
2
/2. When hℓ(·) is nonconvex,

however, the convergence to the global optimizer is not
guaranteed in general. Although some convergence property
have been proved under several assumptions [33]–[37], their
results cannot be directly used for the proposed algorithms.

V. EXTENSION TO COMPLEX-VALUED CASE

In this section, we extend the proposed method to the recon-
struction of the complex-valued vector x̃ ∈ CN ⊂ CN , where
C = {c1, . . . , cL} denotes the set of possible complex values.
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Fig. 3: SER versus number of iterations for binary
vectors ((N,M) = (200, 160), SNR = 15 dB)

Fig. 4: SER versus SNR for binary vectors
((N,M) = (200, 150))

Fig. 5: SER versus SNR for complex-valued vectors
((N,M) = (200, 160))

The measurement vector ỹ ∈ CM is given by ỹ = Ãx̃ + ṽ,
where Ã ∈ CM×N and ṽ ∈ CM are a measurement matrix
and an additive noise vector, respectively.

For the reconstruction of the complex discrete-valued vector,
we extend the SSR optimization (1) to the problem

minimize
s̃∈CN

{
L∑

ℓ=1

qℓh̃ℓ (s̃− cℓ1) + λ
∥∥∥ỹ − Ãs̃

∥∥∥2
2

}
, (13)

which is referred to as the sum of complex sparse regularizers
(SCSR) optimization hereafter. The function h̃ℓ(·) is a sparse
regularizer for the complex-valued sparse vector. The SCSR
optimization with the ℓ1 regularizer has been proposed in [38],
whereas we consider nonconvex regularizers as well in this
paper. As discussed in [38], the optimization in the complex
domain is more suitable than that in the real domain when the
real part and the imaginary part of the unknown vector are not
independent.

For the SCSR optimization (13), we newly con-
sider two kinds of sparse regularizers as the candi-
dates of h̃ℓ(·). For example, as the regularizers based
on the ℓp norm, we define h̃

(p)
⋆ (ũ) =

∑N
n=1 |ũn|p and

h̃
(p)
⋆⋆ (ũ) =

∑N
n=1 (|Re{ũn}|p + |Im{ũn}|p), where ũ =

[ũ1 · · · ũN ]
T ∈ CN . The first regularizer h̃

(p)
⋆ (·) is based

on the modulus for complex numbers, whereas the second
one h̃

(p)
⋆⋆ (·) treats the real part and the imaginary part inde-

pendently. We also define h
(1)
⋆ (·), h(0)

⋆ (·), h(1−2)
⋆ (·), h(1)

⋆⋆ (·),
h
(0)
⋆⋆ (·), and h

(1−2)
⋆⋆ (·) in the same manner. The proxim-

ity operator of γh̃⋆(·) (h̃⋆(·) = h̃
(1)
⋆ (·), h̃

(0)
⋆ (·), h̃

(p)
⋆ (·),

h̃
(1−2)
⋆ (·)) in the complex domain can be written with that

of the corresponding regularizer γh(·) (h(·) = h(1)(·),
h(0)(·), h(p)(·), h(1−2)(·), respectively) in the real domain.
Note that h̃⋆(·) satisfy h̃⋆ (ũ) = h (|ũ|), where we define
|ũ| = [|ũ1| · · · |ũN |]T. By using this property, the proximity
operator of γh̃⋆(·) can be derived as

[
proxγh̃⋆

(ũ)
]
n

=[
proxγh(|ũ|)

]
n

ũn

|ũn|
with a simple manipulation. The proxim-

ity operator of γh̃⋆⋆(·) can also be written with the correspond-
ing proximity operator proxγh(·). Since we have h̃⋆⋆ (ũ) =
h (uR) + h (uI) from the definition, the proximity operator
can be written as

[
proxγh̃⋆⋆

(ũ)
]
n

=
[
proxγh (uR)

]
n
+ j ·

[
proxγh (uI)

]
n

by using a similar approach to [38], where
uR = Re{ũ} and uI = Im{ũ}.

Since ADMM with complex-valued variables have been
discussed in the literature [38], [39], we propose the ADMM
based algorithm for the SCSR optimization (13) by using
the approach in [38]. The resultant algorithm is obtained by
replacing R, (·)T, rℓ, and prox qℓ

ρ hℓ
(·) in Algorithm 1 with C,

(·)H, cℓ, and prox qℓ
2ρ h̃ℓ

(·), respectively.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithms. In the simulation, the measurement matrix is
composed of independent and identically distributed (i.i.d.)
Gaussian variables with zero mean and unit variance. We also
assume the zero mean additive white Gaussian noise. The
initialization is given by z0 = w0 = 0 in ADMM-SSR and
s0 = 0,w0 = 0 in PDS-SSR. Other parameters such as λ and
ρ are chosen to achieve good performance in the simulation.

Figure 3 shows the symbol error rate (SER) versus number
of iterations for the binary vector with (r1, r2) = (−1, 1) and
(p1, p2) = (1/2, 1/2). The result is obtained by averaging the
SER over 2, 000 independent realizations of the measurement
matrix. The problem size is (N,M) = (200, 160) and the
signal-to-noise ratio (SNR) is 15 dB. The parameters are set as
q1 = q2 = 1/2, λ = 0.05, ρ = 3, ρ1 = 2/

(
λ
∥∥ATA

∥∥
2
+ 4

)
,

and ρ2 = 1/2. In Fig. 3, we denote the sparse regularizers
based on the ℓ1 norm, the ℓ2/3 norm, the ℓ1/2 norm, the
ℓ0 norm, and the ℓ1 − ℓ2 difference by ‘ℓ1,’ ‘ℓ2/3,’ ‘ℓ1/2,’
‘ℓ0,’ and ‘ℓ1 − ℓ2,’ respectively. We can see that ADMM-
SSR and PDS-SSR converge to the same SER when we
use the convex ℓ1 regularizer. The proposed algorithms with
nonconvex regularizers, especially with the ℓp and ℓ0 norms,
can achieve much better SER performance.

In Fig. 4, we show the SER of ADMM-SSR versus SNR for
the binary vector reconstruction with (N,M) = (200, 150).
For comparison, we also show the performance of the linear
minimum mean-square-error method and the box relaxation
method [8] as ‘LMMSE’ and ‘Box,’ respectively. The pa-
rameters in ADMM-SSR are set as λ = 0.05, ρ = 3, and
K = 300. The nonconvex regularizers can outperform the
convex ℓ1 regularizer and the box relaxation method.
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Figure 5 shows the SER versus SNR for the reconstruction
of complex discrete-valued vectors with (N,M) = (200, 160).
The distribution of the unknown complex variable is given
by (c1, c2, c3, c4, c5) = (0, 1 + j,−1 + j,−1 − j, 1 − j)
and (p1, p2, p3, p4, p5) = (0.6, 0.1, 0.1, 0.1, 0.1), where pℓ =
Pr(xn = cℓ) (ℓ = 1, . . . , 5). We use the sparse regularizers
given by h̃1(·) = h̃⋆(·) and h̃ℓ(·) = h̃⋆⋆(·) (ℓ = 2, . . . , 5)
because the real part becomes zero only when the imaginary
part is zero in this case. The parameters of the proposed
algorithm are set as qℓ = pℓ, λ = 0.05, ρ = 3, and K = 300.
From the figure, we can see that the proposed approach with
nonconvex regularizer can achieve good performance even for
the reconstruction of the complex discrete-valued vector.

VII. CONCLUSION

In this paper, we have proposed possibly nonconvex opti-
mization problems for the discrete-valued vector reconstruc-
tion in both real- and complex-valued cases. The proposed
method utilizes the sum of sparse regularizers as the regu-
larizer for the discrete-valued vector. Simulation results show
that the proposed algorithms with nonconvex regularizers can
achieve better performance than that with the convex ℓ1
regularizer. Future work includes the PDS based algorithm for
the SCSR optimization and the convergence analysis for the
proposed algorithms with nonconvex regularizers.
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