
Rank-one Tensor Approximation with
Beta-divergence Cost Functions

Michiel Vandecappelle∗†, Nico Vervliet∗, and Lieven De Lathauwer∗†

Abstract—β-divergence cost functions generalize three pop-
ular cost functions for low-rank tensor approximation by in-
terpolating between them: the least-squares (LS) distance, the
Kullback—Leibler (KL) divergence and the Itakura—Saito (IS)
divergence. For certain types of data and specific noise distribu-
tions, beta-divergence cost functions can lead to more meaningful
low-rank approximations than those obtained with the LS cost
function. Unfortunately, much of the low-rank structure that is
heavily exploited in existing second-order LS methods, is no
longer exploitable when moving to general β-divergences. In
this paper, we show that, unlike in the general rank-R case,
rank-1 structure can still be exploited. We therefore propose an
efficient method that uses second-order information to compute
nonnegative rank-1 approximations of tensors for general β-
divergence cost functions.

Index Terms—tensors, β-divergences, low-rank, CPD, BSS

I. INTRODUCTION

With the recent explosion of interest in data and data ana-
lytics, tensors have found their way into many applications in
machine learning and signal processing [1], [2]. These higher-
order generalizations of vectors and matrices represent higher-
order datasets while preserving their higher-order structure.
Unfortunately, as the number of entries of an N th-order tensor
with dimensions I × I × . . . × I grows as IN , its size
quickly becomes problematic. By working with a low-rank
approximation of the tensor instead of the full tensor, the
required storage space and computation time can often be
reduced dramatically, while still maintaining all the important
features of the data in the tensor. A rank-R approximation
of a tensor consists of R rank-1 terms, which themselves are
tensors that can be written as an outer product of N nonzero
vectors. To obtain a rank-R approximation, several algebraic
and optimization-based methods have been developed [3]–[7].

By using β-divergences dβ as cost functions, the stan-
dard least-squares cost function can be generalized. These

Funding: Michiel Vandecappelle is supported by an SB Grant from the
Research Foundation–Vlaanderen (FWO). Nico Vervliet is supported by Inter-
nal Funds KU Leuven (PDM/18/146). Research furthermore supported by: (1)
Flemish Government: This work was supported by the Fonds de la Recherche
Scientifique–FNRS and the Fonds Wetenschappelijk Onderzoek–Vlaanderen
under EOS Project no 30468160 (SeLMA); (2) EU: The research leading
to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013)
/ ERC Advanced Grant: BIOTENSORS (no 339804). This paper reflects only
the authors’ views and the Union is not liable for any use that may be made
of the contained information; (3) KU Leuven Internal Funds C16/15/059.
∗KU Leuven, Dept. of Electrical Engineering ESAT/STADIUS, Kasteelpark

Arenberg 10, bus 2446, B-3001 Leuven, Belgium
† Group Science, Engineering and Technology, KU Leuven – Kulak, E.

Sabbelaan 53, 8500 Kortrijk, Belgium
(Michiel.Vandecappelle, Nico.Vervliet, Lieven.DeLathauwer)@kuleuven.be.

divergences, a special class of Bregman divergences [8], are
defined for β ∈ R and interpolate continuously between the
Itakura–Saito (IS) divergence (β = 0), Kullback–Leibler (KL)
divergence (β = 1) and the least-squares distance (β = 2).
When used as a cost function, values of β < 2 penalize
errors on small entries more heavily compared to the least-
squares distance, while the converse is true for values of
β > 2. β-divergences are thus particularly useful when the
data consists of entries of different magnitudes. As such, audio
data is a prime example where β-divergence cost functions
(with β < 2) outperform the least-squares cost function
as these manage to capture the low intensity components
of the signals better; see, for example, [9] and references
therein for a profound discussion of the use of β-divergences
in nonnegative matrix factorization (NMF) of audio spectra.
Notably, an NMF with the KL- or IS-divergence corresponds
to maximum likelihood estimation under the assumption of
Poisson distributed data and data perturbed by multiplicative
Gamma noise, respectively [10], while the least-squares cost
function assumes additive independent and identically dis-
tributed (i.i.d.) Gaussian noise. The β-divergence dβ(x, y) is
defined as follows:

dβ(x, y) =


xβ+(β−1)yβ−β(xy(β−1))

β(β−1) β ∈ R \ {0, 1}
x ln

(
x
y

)
− x+ y β = 1

x
y − ln

(
x
y

)
− 1 β = 0

(1)

Where the least-squares distance considers only the absolute
difference between a target value x and its estimate y, other
β-divergences also take the size of x and y themselves into
account. If β = 0, the divergence is scale invariant, meaning
that d0(x, 2x) is the same for any value of x. If β > 0,
dβ(x, 2x) is larger for large values of x, while for β < 0,
dβ(x, 2x) is larger for small values of x.

A. Notation

We denote scalars, vectors, matrices and tensors by low-
ercase (a), bold lowercase (a), bold uppercase (A), and
calligraphic letters (A), respectively. For simplicity, we will
only consider third-order tensors. Powers (X•a), divisions and
logarithms of matrices are entry-wise throughout the text. The
Kronecker, column-wise Khatri–Rao, and Hadamard products
of matrices and the outer product of vectors are denoted by ⊗,
�, ∗ and ⊗ respectively, while the mode-n tensor contraction
(i.e., tensor-vector product) of a tensor T and a vector x is
written as T ·n x. The transpose of a matrix X is denoted
by XT and diag(x) forms a square matrix that has x as its

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



diagonal. When using subscripts to specify certain entries of
a tensor T , a colon (:) refers to all entries of a specific mode.
The vectorization of the tensor X ∈ RI×J×K maps xi1i2i3 to
vec(X )q , with q = i1 + (i2 − 1)I + (i3 − 1)IJ . Its inverse
is denoted by unvec(x). A mode-n fiber of a tensor is a
vector obtained by fixing all indices but the nth. The mode-n
unfolding T(n) of a tensor T is constructed by stacking all its
mode-n fibers as columns of a matrix. For example: ti1i2i3 is
mapped to

(
T(2)

)
i2,q

, with q = i1+(i3− 1)I . The (K×K)-
identity matrix is written as IK and 1 is a column vector of
appropriate dimensions, consisting of only ones. For a rank-R
approximation T ≈

∑R
r=1 ar⊗br⊗cr, the column vectors ar,

br and cr can be collected into factor matrices A, B and C.
The rank-R approximation is then written as T ≈ JA,B,CK.

II. β-DIVERGENCE RANK-R APPROXIMATION

For tensor data, β-divergence cost functions have been used
to compute nonnegative rank-R approximations of tensors.
The proposed algorithms [11]–[14], however, are all either
first-order methods, are alternating schemes, only consider
KL- or IS-divergences, or are combinations of these. In con-
trast, we propose a method that uses second-order information
to achieve near second-order convergence, is all-at-once and
applicable for any value of β. For a tensor T ∈ RI×J×K and
its low-rank approximationM = JA,B,CK, the β-divergence
cost function (1) leads to the following optimization problem:
minA,B,C f(x), with x = [vec (A) ; vec (B) ; vec (C)] and

f(x) =
1

β(β − 1)

N∑
n=1

tβn+(β− 1)mβ
n−β

(
tnm

(β−1)
n

)
, (2)

where N = IJK and n runs over all tensor entries. Using
(1), the cost functions for the degenerate special cases β = 1
(KL divergence) and β = 0 (IS divergence) are:

f(x) =
N∑
n=1

tn ln

(
tn
mn

)
− tn +mn, and (3)

f(x) =

N∑
n=1

tn
mn
− ln

(
tn
mn

)
− 1, (4)

respectively. Note that the case β = 2 corresponds to the
least-squares cost function. β-divergences are only defined
for nonnegative values, so we constrain A, B and C to
be nonnegative matrices. For any value of β, the gradient
g = [gA;gB;gC] is:

gA = vec
(
R(1)(C�B)

)
(5)

gB = vec
(
R(2)(C�A)

)
gC = vec

(
R(3)(B�A)

)
,

with R = M−T
M•(2−β) . Note that g can equivalently be written

as g = JTvec (R), with J the Jacobian of the low-rank model
M w.r.t. A, B, C. Only R depends on the specific cost
function that is chosen. For β = 2, R is simply the residual
M−T . For a second-order method, (a good approximation of)
the Hessian is required. In [7], an approximation of the form

JTZJ is proposed. This approximation is further generalized
to arbitrary entry-wise cost functions in [15], using similar
ideas as in [16]. The diagonal matrix Z has vec(D) as its
diagonal, where D is the entry-wise second-order derivative
of the β-divergence cost function w.r.t. to M:

D =
(β − 1)M− (β − 2)T

M•(3−β)
=

(β − 2) (M−T ) +M
M•(3−β)

.

(6)
Note that for β /∈ [1, 2], D can have negative values when the
low-rank approximation M is not close enough to the tensor
T . Consequently, the Hessian approximation is not guaranteed
to be positive semidefinite (PSD), i.e., to have only eigenvalues
≥ 0. Positive semidefiniteness of the Hessian approximation
guarantees that the local quadratic approximation of the cost
function has a minimum. Without this property, one can end
up in a saddle point instead. If JTZJ is not PSD, one needs
to use an optimization algorithm that can handle indefinite
Hessian approximations. An alternative is to first find a good
initialization, e.g., the solution for β = 2, before moving to the
β-divergence algorithm. See [15] for an extended discussion.
For β = 2, the matrix Z is equal to the identity matrix and one
recovers the Gauss-Newton approximation JTJ of the Hessian,
which is the Gramian of the Jacobian.

Due to the shape of β-divergence cost functions, simply
projecting the unconstrained Gauss–Newton point to the non-
negative orthant generally leads to poor results. In the kth
iteration of the algorithm, the current model is xk and a
nonlinear projected gradient method is used to find the next
step p such that xk + p = xk+1. The cost function f(x)
is approximated by its second-order Taylor expansion m(x).
To assure convergence of the algorithm, we first find the
Cauchy point pC of m(x) within an l∞-norm trust region
that incorporates the nonnegativity constraints on x. Starting
from this point, we then approximately solve the quadratic
program minpm(x+p) subject to x+p ≥ 0 within the trust
region and use p as the next step of the algorithm.

III. RANK-1 APPROXIMATIONS

The low-rank structure of the model can be exploited when
β = 2. For example: products of the form M(1) (C�B)
can be efficiently computed as A

(
(BTB) ∗ (CTC)

)
. Un-

fortunately, this structure is no longer exploitable in the
computation of the objective function, gradient and Hessian
approximation for other values of β. The model has to be
expanded to the full tensor before computing products, sums or
powers of its entries mn =

∑R
r=1 airbjrckr, which negatively

influences both time and storage complexity of the method.
Fortunately, for R = 1, we have M = Ja,b, cK and thus:

mβ
n = (aibjck)

β
= aβi b

β
j c
β
k , (7)

which allows us to exploit the multilinear structure of the
model and simplifies the computations significantly compared
to the rank-R case. Dedicated, efficient expressions for the
objective function, gradient and Hessian approximation are
derived in this section. In various applications, e.g., [17], [18],
one only needs a rank-1 approximation of a tensor in order to

2019 27th European Signal Processing Conference (EUSIPCO)



extract its most important component. Using similar ideas as
in [19]–[21], the method could also be used to extract more
than one nonnegative rank-1 term from a tensor.

A. Cost function

Writing syx =
∑Q
q=1 x

y
q for a vector x ∈ RQ, we can

rewrite f(x) from (2) to obtain the optimization problem
mina,b,c f(x) with

f =
1

β(β − 1)

[(
N∑
n=1

tβn

)
+ (β − 1)sβas

β
bs
β
c

− βT ·1 a•(β−1) ·2 b•(β−1) ·3 c•(β−1)
]
. (8)

The first term
(∑N

n=1 t
β
n

)
does not involve the model pa-

rameters and can be precomputed. Although adding this term
does not change the optimal a, b and c, it gives us a frame
of reference to assess the quality of the model, as it assures
that f = 0 when mn = tn,∀n ∈ {1, . . . , N}. The second
term follows from (7). It allows us to only compute the (non-
integer) power of the entries of the three vectors a, b and c
instead of the power of all tensor entries mn, which offers a
considerable efficiency gain: O(I + J +K) flops and storage
compared to O(IJK). In the last term, we again use (7) to
avoid forming the full tensor M and computing (non-integer)
powers of all its entries. For the KL-divergence, i.e., β = 1,
the cost function (3) becomes:

f =

(
N∑
n=1

tn ln (tn)− tn

)
−

(
N∑
n=1

tn ln (mn)

)
+ s1as

1
bs

1
c

=

(
N∑
n=1

tn ln (tn)− tn

)
− 1T

[
TT

(1) ln(a)

TT
(2) ln(b)

TT
(3) ln(c)

]
+ s1as

1
bs

1
c.

The first term can again be precomputed. For the second term,
because of the property ln(abc) = ln(a) + ln(b) + ln(c), we
only need to compute logarithms of the three vectors a, b and
c instead of logarithms of all entries of M. For the last term,
the sum over all tensor entries is converted to three vector
sums, as before. For the IS-divergence, i.e., β = 0, the cost
function (4) can be rewritten as follows:

f=−N−

(
N∑
n=1

ln(tn)

)
+T ·1

1

a
·2

1

b
·3
1

c
+1T

[
JK ln(a)
IK ln(b)
IJ ln(c)

]
.

The same ideas can be used as in the previous two cases.

B. Gradient

The gradient [ga;gb;gc] can be simplified in a similar
manner as the cost function. For general β, ga from (5) can
be written as

ga=
J∑
j=1

K∑
k=1

m:jk−t:jk

m
•(2−β)
:jk

bjck

=sβbs
β
ca
•(β−1)−a•(β−2) ∗

[
T ·2b•(β−1) ·3 c•(β−1)

]
. (9)

Analogously, we find gb and gc. Note that we never need
to explicitly form the (I×J×K)-tensor

( M−T
M•(2−β)

)
and thus

also avoid computing (non-integer) powers of all entries of
M. For β /∈{0,1}, all factors of the first term have already
been obtained in (8), so only a scalar-vector multiplication is
required. For the second term, both factors of the Hadamard
product are new, so we need to compute an entry-wise vector
power and a contraction. Both factors are reused in the
computation of the Hessian approximation, however.

C. Hessian approximation

The full Hessian approximation JTZJ consists of 3×3
blocks G(p,q), with p,q∈{1,2,3}. Using D from (6), the
diagonal and off-diagonal blocks are of the form

G(1,1)=diag
(
D ·2b•2 ·3 c•2

)
and

G(1,2)=
[
abT]∗(D ·3 c•2

)
,

respectively [15]. Due to symmetry, only the blocks with p≤q
need to be computed. To compute these blocks efficiently, we
exploit the rank-1 structure to avoid forming the tensor D
and taking (non-integer) powers of all entries of a tensor. The
diagonal blocks can be computed using the same strategies
as for the gradient. As mentioned above, we precompute
and reuse factors from the gradient when possible. Note that
for rank-1 approximations, the diagonal blocks are diagonal
matrices. Letting G

(1,1)
diag be the diagonal of G(1,1), we find:

G
(1,1)
diag =

J∑
j=1

K∑
k=1

(β−1)m:jk−(β−2)t:jk

m
•(3−β)
:jk

b2jc
2
k

=(β−1)sβbs
β
ca
•(β−2)

−(β−2)a•(β−3) ∗
[
T ·2b•(β−1) ·3 c•(β−1)

]
.

The matrices G(2,2) and G(3,3) can be found similarly. For
the off-diagonal blocks, we have

G(1,2)=
[
abT]∗ K∑

k=1

(β−1)M::k−(β−2)T::k

M
•(3−β)
::k

c2k

=

[
a•(β−2)

(
b•(β−2)

)T
]
∗
[
(β−1)sβcab

T

−(β−2)
(
T ·3 c•(β−1)

)]
.

Analogously, one can find G(1,3) and G(2,3). Again, results
from the gradient (9) are reused in the first term, leaving only
a scaled vector outer product to compute. The second term
still has to be computed. Note, however, that the factor (T ·3
c•(β−1) can be obtained as an intermediate result of computing
T ·2b•(β−1) ·3 c•(β−1) in the gradient.

For large-scale problems, one can use the (precondioned)
conjugate gradient Steihaug [22] (for convex cost functions)
or minres [23] (for nonconvex cost functions) method to
approximately solve minpm(xk+p) with xk+p≥0. Using
this approach, we only need to compute products of the form

2019 27th European Signal Processing Conference (EUSIPCO)



[ya;yb;yc]=JTZJ[xa;xb;xc], where ya and xa have the
same size as a, etc. Using the previously derived expressions,
we can compute such products ya=G(1,1)xa+G(1,2)xb+
G(1,3)xc, without having to form the matrix JTZJ, in the
following way:

G(1,1)xa=
[
xa ∗a•(β−3)

]
∗
[
(β−1)sβbs

β
ca

−(β−2) T ·2b•(β−1) ·3 c•(β−1)
]
,

G(1,2)xb=(β−1)sβca
•(β−1)

[
xb

Tb•(β−1)
]

−(β−2) a•(β−2) ∗
[
T ·2bxb

·3 c•(β−1)
]
,

G(1,3)xc=(β−1)sβba
•(β−1)

[
xc

Tc•(β−1)
]

−(β−2) a•(β−2) ∗
[
T ·2b•(β−1) ·3 cxc

]
,

where bxb
=xb ∗b•(β−2) and cxc =xc ∗c•(β−2). Note that

the first terms of G(1,2) and G(1,3) both have the factor
(β−1)a•(β−1), so their sum can be computed as

(β−1)a•(β−1)
(
sβcxb

Tb•(β−1)+sβbxc
Tc•(β−1)

)
.

The sum of their second terms can also be rewritten as

(2−β) a•(β−2) ∗
[
T ·2b•(β−1) ·3 cxc +T ·2bxb

·3 c•(β−1)
]
.

Computing the product JTZJ[xa;xb;xc] only requires storing
vectors of length I , except for the intermediate steps in the
computation of the tensor contractions. Note that even this can
be avoided by computing the tensor contractions slice by slice,
i.e., computing only one entry at the time. When T is sparse
or structured (e.g., Hankel, Löwner, low multilinear rank), this
structure can also be exploited during the computations [24],
leading to lower computation times and storage requirements.
Similar expressions can be derived for yb and yc. As JTZJ
is diagonally dominant and its diagonal blocks are diagonal
matrices, a Jacobi preconditioner can be expected to perform
well. The preconditioner M−1 can be obtained cheaply by
computing G

(1,1)
diag , G(2,2)

diag and G
(3,3)
diag :

M−1=diag

([
1

G
(1,1)
diag

;
1

G
(2,2)
diag

;
1

G
(3,3)
diag

])
.

Compared to the expressions for general R, those for the
rank-1 case offer a significant efficiency gain. On the one
hand, more of the multilinear structure can be exploited. On
the other hand, more intermediate results from the objective
function and gradient can be reused in the gradient and Hessian
approximation, respectively.

IV. EXPERIMENTS

Two experiments are performed on synthetic data, using a
computer with an Intel Core i7-6820HQ CPU at 2.70GHz and
16GB of RAM, MATLAB R2016b and Tensorlab 3.0 [25].

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

Time (s)

β

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

Time (s)

β

Figure 1. Time spent computing cost function ( ), gradient ( ) and Hessian
approximation ( ) during 10 iterations of the NLS method with (top bars)
and without (bottom bars) rank-1 exploitation. The rank-1 method offers a
large speedup, except for the case β=2 (LS cost function).

Experiment 1: We analyze the decrease in computation
time that the exploitation of the rank-1 structure brings by
computing rank-1 decompositions of 10 random rank-1 tensors
T ∈R10×10×10×10×10×10

+ . The factors are sampled uniformly
from [0,1]. We initialize with random factors with entries
sampled uniformly from [0,1] and perform 10 iterations of
the general rank-R and the specialized rank-1 algorithms. In
Figure 1, we see the time needed for the computation of the
cost function, gradient and Hessian approximation for different
values of β, averaged over the 10 tensors. One can see that the
rank-1 algorithm requires about 2 to 6 times less computation
time compared to the general β-divergence algorithm. The
main improvements lie in the computation of the gradient,
due to the fact that almost all factors can be reused from
the objective function. Except for β=1 the computation of
the cost function also becomes much more efficient, partly
because the full tensor M never has to be formed explicitly.
Of course, in this noiseless case, the optimal factor matrices
are the same for any value of β. Thus in practice, one should
use the least-squares algorithm instead, as it is still faster than
the rank-1 β-divergence method.

Experiment 2: We compare the number of success-
ful rank-1 approximations for three different methods:
the proposed second-order rank-1 NLS method, the first-
order generalized canonical polyadic decomposition (GCPD)
method [11], and a first-order method using multiplicative
updates (MU) [12]. A relative step size of ε=2.22 ·10−16 is
used as a stopping criterion for the NLS and MU methods
and a relative cost function improvement of ε is used as as
stopping criterion for the GCPD method. The methods were
additionally limited to 100 iterations, but this upper bound is
only reached by the GCPD method for β<1. We perturb 20
rank-1 tensors T ∈R50×50×50

+ with factor matrices sampled
uniformly from [0,1] by multiplicative Gamma noise with an
SNR of 40dB. These tensors are approximated by a rank-1
tensor. We call an approximation successful if the relative
error on the obtained factor matrices lies below 10−3. In
Table I, we can see that the rank-1 NLS method and the
MU algorithm find the solution in all cases, while the GCPD

2019 27th European Signal Processing Conference (EUSIPCO)



Table I
FRACTION OF SUCCESSFUL APPROXIMATIONS, COMPUTATION TIME AND

MEMORY REQUIREMENTS FOR THREE RANK-1 β-DIVERGENCE
APPROXIMATION METHODS. THE NLS ALGORITHM IS SLIGHTLY FASTER
THAN THE MU ALGORITHM AND REQUIRES LESS STORAGE SPACE. THE

GCPD METHOD GENERALLY PERFORMS BADLY FOR β<1.

Method \ β −0.5 0 0.5 1 1.5 2.5

Success rate Rank-1 NLS 1 1 1 1 1 1
MU 1 1 1 1 1 1
GCPD 0 0.05 0.65 1 1 1

Time (s) Rank-1 NLS 1.62 1.25 0.47 0.37 0.33 0.25
MU 5.26 4.85 1.66 0.11 0.36 0.49
GCPD 7.53 1.73 3.90 0.73 1.04 1.15

Memory Rank-1 NLS O(I) + tensor contractions
MU O(I3)
GCPD O(I3)

method fails for values of β<1, where convexity of dβ is
not guaranteed. The NLS algorithm is slightly faster than the
MU algorithm. Further, for an (I×I×I)-tensor T , the MU
and GCPD algorithms require the formation of a full (dense)
(I×I×I)-approximation tensor in every iteration, even when
T is sparse. In contrast, the rank-1 NLS method only needs to
store some vectors of length I and compute contractions with
the original tensor T .

V. CONCLUSION

As rank-1 approximations are often used in practice, we pro-
pose a dedicated algorithm to compute a rank-1 β-divergence
approximation to a tensor. The algorithm uses a good approx-
imation of the Hessian and thus offers fast local convergence,
while it avoids the construction of large intermediate tensors
and can exploit available structure in the tensor. In future work,
we will look at other classes of cost functions and possible
extensions to higher ranks.

REFERENCES

[1] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[2] A. Cichocki, C. Mandic, A.-H. Phan, C. Caiafa, G. Zhou, Q. Zhao,
and L. De Lathauwer, “Tensor decompositions for signal processing
applications. From two-way to multiway component analysis,” IEEE
Signal Processing Magazine, vol. 32, pp. 145–163, 2015.

[3] A.-H. Phan and A. Cichocki, “PARAFAC algorithms for large-scale
problems,” Neurocomputing, vol. 74, no. 11, pp. 1970–1984, 2011.

[4] L. Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-based al-
gorithms for tensor decompositions: Canonical polyadic decomposition,
decomposition in rank-(Lr,Lr,1) terms, and a new generalization,”
SIAM Journal on Optimization, vol. 23, no. 2, pp. 695–720, 2013.

[5] I. Domanov and L. De Lathauwer, “Canonical polyadic decomposition of
third-order tensors: Reduction to generalized eigenvalue decomposition,”
SIAM Journal on Matrix Analysis and Applications, vol. 35, no. 2, pp.
636–660, 2014.

[6] E. Acar, D. M. Dunlavy, and T. G. Kolda, “A scalable optimiza-
tion approach for fitting canonical tensor decompositions,” Journal of
Chemometrics, vol. 25, no. 2, pp. 67–86, 2011.

[7] N. Vervliet and L. De Lathauwer, “Numerical optimization based algo-
rithms for data fusion,” in Data Fusion Methodology and Applications,
M. Cocchi, Ed. Elsevier, 2019, vol. 31, pp. 1–41.

[8] R. Hennequin, B. David, and R. Badeau, “Beta-divergence as a subclass
of Bregman divergence,” IEEE Signal Processing Letters, vol. 18, no. 2,
pp. 83–86, 2011.

[9] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization
with the β-divergence,” Neural Computation, vol. 23, no. 9, pp. 2421–
2456, 2011.

[10] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factor-
ization with the Itakura–Saito divergence: With application to music
analysis,” Neural computation, vol. 21, no. 3, pp. 793–830, 2009.

[11] D. Hong, T. G. Kolda, and J. A. Duersch, “Generalized canonical
polyadic tensor decomposition,” arXiv preprint arXiv:1808.07452, 2018.

[12] A. Cichocki and A.-H. Phan, “Fast local algorithms for large scale
nonnegative matrix and tensor factorizations,” IEICE transactions on
fundamentals of electronics, communications and computer sciences,
vol. 92, no. 3, pp. 708–721, 2009.

[13] E. C. Chi and T. G. Kolda, “On tensors, sparsity, and nonnegative
factorizations,” SIAM Journal on Matrix Analysis and Applications,
vol. 33, no. 4, pp. 1272–1299, 2012.

[14] S. Hansen, T. Plantenga, and T. G. Kolda, “Newton-based optimization
for Kullback–Leibler nonnegative tensor factorizations,” Optimization
Methods and Software, vol. 30, no. 5, pp. 1002–1029, 2015.

[15] M. Vandecappelle, N. Vervliet, and L. De Lathauwer, “Canonical
polyadic decomposition with general cost functions using generalized
Gauss–Newton,” 2019, Internal Report 19-05, ESAT-STADIUS, KU
Leuven (Leuven, Belgium).

[16] N. Schraudolph, “Fast curvature matrix-vector products for second-order
gradient descent,” Neural computation, vol. 14, pp. 1723–38, 08 2002.

[17] X. Shi, H. Ling, J. Xing, and W. Hu, “Multi-target tracking by rank-
1 tensor approximation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2013), 2013, pp.
2387–2394.

[18] Y. Yang, Y. Feng, X. Huang, and J. Suykens, “Rank-1 tensor properties
with applications to a class of tensor optimization problems,” SIAM
Journal on Optimization, vol. 26, no. 1, pp. 171–196, 2016.

[19] M. Kim and P. Smaragdis, “Efficient model selection for speech en-
hancement using a deflation method for nonnegative matrix factoriza-
tion,” in 2014 IEEE Global Conference on Signal and Information
Processing (GlobalSIP 2014). IEEE, 2014, pp. 537–541.

[20] N. Gillis and F. Glineur, “Using underapproximations for sparse non-
negative matrix factorization,” Pattern recognition, vol. 43, no. 4, pp.
1676–1687, 2010.

[21] A. Shashua and T. Hazan, “Non-negative tensor factorization with
applications to statistics and computer vision,” in Proceedings of the
22nd International Conference on Machine Learning (ICML 2005),
August 2005, pp. 792–799.

[22] T. Steihaug, “The conjugate gradient method and trust regions in large
scale optimization,” SIAM Journal on Numerical Analysis, vol. 20, no. 3,
pp. 626–637, 1983.

[23] C. Paige and M. Saunders, “Solution of sparse indefinite systems of
linear equations,” SIAM Journal on Numerical Analysis, vol. 12, no. 4,
pp. 617–629, 1975.

[24] N. Vervliet, O. Debals, and L. De Lathauwer, “Exploiting efficient rep-
resentations in large-scale tensor decompositions,” 2016, Internal Report
16-174, ESAT-STADIUS, KU Leuven (Leuven, Belgium), Accepted for
publication in SIAM Journal on Scientific Computing.

[25] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De
Lathauwer, “Tensorlab 3.0,” available online, March 2016. URL:
http://www.tensorlab.net.

2019 27th European Signal Processing Conference (EUSIPCO)


