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ABSTRACT
In this paper, we propose a compressed sensing scheme for volu-
metric synthetic aperture measurements in ultrasonic nondestructive
testing. The compression is achieved by limiting the measurement
to a subset of the Fourier coefficients of the full measurement data,
where we also address the issue of a suitable hardware architecture
for the task. We present a theoretic analysis for one of the proposed
schemes in terms of the Restricted Isometry Property and derive
a scaling law for the lower bound of the number of necessary
measurements for stable and efficient recovery. We verify our
approach with reconstructions from measurement data of a steel
specimen that was compressed synthetically in software. As a side
result, our approach yields a variant of the 3-D Synthetic Aperture
Focusing Technique which can deal with compressed data.

Index Terms— 3D ultrasonic imaging, Sparse Signal Recovery,
Compressive Sensing, SAFT

I. INTRODUCTION
It is now well established that based on Compressed Sensing (CS)

theory [1] the number of measurement samples to reconstruct the
relevant signal information can be reduced significantly compared to
the Nyquist rate, provided that the signal is sparse in some known
domain.

In ultrasonic Nondestructive Testing (NDT), a widespread ap-
proach is to acquire several pulse-echo measurements using a
single transducer moved along an equidistant grid on the surface of
the specimen. Typically, these measurements, called A-scans, are
sampled at rates much higher than the Nyquist rate, since imaging
is performed using the Synthetic Aperture Focusing Technique
(SAFT) [2]. SAFT is based on a Delay-and-Sum (DAS) scheme in
time-domain for which a dense temporal sampling is beneficial [3,
Sec. 3.4.3]. To give an example: For an ultrasonic pulse with center
frequency 4 MHz and a bandwidth of 3 MHz a sampling rate of
80 MHz to 120 MHz is common.

In our previous work, we showed that using the model underlying
the SAFT as a forward model for Sparse Signal Recovery (SSR)
can improve the image quality compared to SAFT images [4], [5].
Equivalent results have also been reported for the Total Focusing
Method using a phased array instead of a single transducer [6].
Further, we showed that this can be implemented matrix-free
enabling 3-D reconstruction of ultrasonic NDT data [5] using the
Python package described in [7]. The code is freely available at [8].

Still, these results are based on measurement data sampled at
a sampling rate that is typical for SAFT although the occupied
bandwidth is much lower. In medical ultrasound applications it was
already shown by [9] that beamforming in the frequency domain
allows sampling at much lower rate. As oversampling is then no
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longer beneficial to beamformer performance it is substituted by
employing I/Q-sampling which is efficient for bandpass signals such
as the ultrasonic pulse. In [9] the amount of data is further reduced
after sampling by the application of CS theory [1], exploiting sparsity
in the frequency domain.

In this paper, we extend the SSR scheme from [5] to a CS scheme
based on subsampling in the frequency domain in Sec. II. A theoretic
analysis of the recovery performance in terms of the Restricted
Isometry Property (RIP) of this subsampling scheme is presented in
Sec. III. Based on this, three different strategies for the frequency
subsampling are derived and compared: A randomized approach
following standard CS theory and two schemes that take into account
a priori knowledge about the spectrum of the measurements. Using
measurement data of a steel specimen containing several flat bottom
holes, it is shown in Sec. IV that the randomized scheme performs
best in terms of focusing along the depth axis, which is due to the
fact that it results in the largest sampled bandwidth. However, it
leads to artifacts and false negatives in the x- and y-direction that do
not appear when using the two schemes based on a priori knowledge.
As a side result, we show that frequency-domain subsampling allows
us to carry out a reconstruction similar to 3-D SAFT based on the
compressed data. Finally, Sec. V concludes the findings.

II. DATA MODEL
Consider the pulse-echo model defined in [4], [5] for a specimen

that is homogenous and isotropic with constant speed of sound c0
and has a flat surface. The specimen contains an unknown number
of I defects located at the unknown arbitrary positions (xi, yi, zi).
The discrete measurement samples, sampled at a rate 1

ts
, can be

described in the noise-free case as

bx,y(t) =

I∑
i=1

ai · gx,y(xi, yi, zi)

· h(t− τx,y(xi, yi, zi))

(1)

where the i-th reflector leads to a trace τx,y(xi, yi, zi) =
1
c0

√
(x− xi)2 + (y − yi)2 + z2i in the measurements from posi-

tions (x, y, 0),

gx,y(xi, yi, zi) = e−αzi
((x−xi)2+(y−yi)2), αzi =

1

(tan (α) · zi)2
(2)

accounts for the characteristic of a transducer with beam opening
angle α [5] and h(·) describes the transmit pulse emitted into the
medium by the transducer in time domain. So, in order to make
these measurements h(·) has to be chosen appropriately, which also
means that it is a known property of the measurement setup.

Introducing a suitable grid [4], a linear model can be deduced
from (1) as

vec b = Ha, (3)
where the vector a ∈ RNxNyNz contains the defect amplitudes ai
at the indices i corresponding to their defect positions (xi, yi, ti).
Accordingly, each column of H contains the vectorized modeled
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volumetric data set of a single reflector located at that position. In
this work, we aim at determining the i ∈ N where ai 6= 0, i.e. the
positions where a defect is located in the specimen. To do so, we
assume that all defects lie on a grid, which introduces a model error
that is negligible as long as we chose the grid fine enough.

The size of the dictionary matrix H depends on the number of
scan positions Nx, Ny and the number of measurement samples
Nt per A-scan, corresponding to Nz depth positions (zi), as H ∈
RN×N with N = NxNyNt. For realistic scenarios, its size becomes
infeasibly large. However, the underlying shift-invariance of the
model, when sampled uniformly in x and y directions [4], allows for
an efficient transform of H , which means there exist low complexity
algorithms to calculate H · x and HH · x without building H
explicitly. Most SSR algorithms admit a formulation, where H only
appears via these products, resulting in so-called matrix-free and
thus practically suitable algorithms [5].

By observing linear combinations of the signal the standard CS [1]
model can be applied to extend (3) under the assumption that the
measured signal is sparse in some known basis. Then, the signal
of interest a can be reconstructed directly from the observations
taken, which resemble a collection of linear functionals, according
to the model

y = Ψ · vec b+ n = ΨHa+ n, (4)
where Ψ ∈ CM×N with M � N is the so-called measurement
or compression matrix representing the aforementioned linear func-
tionals and the vector n ∈ RM accounts for additive measurement
noise.

One of the cornerstones of the CS theory is that if Ψ is drawn
randomly from a suitable ensemble then there exist efficient (in
terms of runtime and memory) means of recovering a from y, if
the true a has only S non-zero entries. For instance, it is sufficient
to draw the entries of Ψ i.i.d. from a sub-Gaussian distribution
with suitably chosen variance factor and M ∼ S log(N/S) for
efficient recovery to be possible with overwhelming probability.
In this case the term efficient recovery means that the generally
NP-hard problem

min
a
‖a‖0 s. t. ‖y −ΨHa‖22 ≤ ε

can be solved with the following proxy
min
a
‖y −ΨHa‖22 + λ‖a‖1

for suitably chosen λ, which can be solved in polynomial runtime.
However, this random sampling has two drawbacks: Due to the size
of N , a random and thus unstructured Ψ would be prohibitively large
in terms of memory consumption and computing time and hardware
feasibility. Further, an unstructured Ψ would require the complete
measurement b for the compression stage which is impractical for
synthetic aperture pulse-echo measurements.

However, since the measurements are performed A-scan-wise,
an intuitive choice is to implement the same compression for each
A-scan, i.e. Ψ = A⊗ INxNy , where INxNy is the identity matrix
and ⊗ denotes the Kronecker or outer product. Ultimately, this
results in M = mNxNy � N if and only if m � Nt with m
being the number of observations taken for each A-scan. Note that
matrix-vector products of the kind (A⊗B)z can be implemented
efficiently, since

A⊗B = (A⊗ I) · (I ⊗B).
If now A and B share the same property as H in (4), i.e. they
allow for an efficient matrix-vector multiplication, the complexity
of calculating (A ⊗ B)z decreases even further. For the given
Ψ = A⊗ INxNy the second factor INxNy trivially has an efficient
matrix-vector product.

It has been shown in [10] that Fourier matrices FJ ∈ Cm×Nt

premultiplied with a random sign matrix Σ = diag(ξ) for a
Rademacher vector ξ ∈ {−1,+1}Nt , where one selects the rows
of F indexed by the set J , are suitable compression matrices
in terms of recovery performance. To this end, one selects J
uniformly at random from all possible subsets of magnitude m

for some appropriately chosen m. When assuming Nt to be drawn
from a uniform sampling grid the Fast Fourier Transform may be
applied to offer an efficient matrix-vector product when we choose
A = FJ . Combining these thoughts results in an efficient matrix-
vector product for the whole matrix ΨH , which is represented by
the following two linear functions

fΨH : RN → CN , x 7→ fΨH(x) = ΨHx
and

bΨH : CN → RN , y 7→ bΨH(y) = (ΨH)Hy.
So, by choosing AJ = FJ , in each measurement, we measure

|J | Fourier coefficients of bx,y in (1) in each measurement instead
of Nt time samples. Rewriting (1) in the frequency domain, we get

b̂x,y(mω0) = gx,y(xi, yi, zi)ĥ(mω0)

I∑
i=1

ejmω0τx,y(xi,yi,zi), (5)

with ω0 = 2π
Nt·ts . From this, we define ĥ ∈ CNt as the vector

containing the Nt discrete Fourier coefficients of the inserted pulse.

II-A. Implementation considerations
To implement this observation strategy in hardware, a natural

idea is to perform detection of the Fourier coefficients selected
in FJ directly in the frequency domain. A bank of narrow-band
filters, consisting of either Nt fixed-frequency or m tunable filters,
performs selection of m narrow-band bandpass signals resembling
the desired coefficients. The output of those filters will then be
processed by m detectors determining the amplitude and phase
of each filter’s output signal. Further, a 2m-channel Analogue-to-
Digital Converter (ADC) is required to sample the data at a very
low rate, corresponding to the measurement rate of A-scans. To
save some hardware effort this ADC may also be implemented at a
rate > 2m higher if 2m sample-and-hold amplifiers and a 2m-to-1
multiplexer is incorporated. It is clear that such an implementation is
restricted to observing m coefficients at most and is highly inflexible.
If implemented using discrete components, a ludicrous amount of
design effort, tuning and calibration is necessary to achieve sufficient
performance. However, this can be mitigated to some degree with an
integrated solution due to better scaling and matching of repetitive
subcircuit elements.

Therefore, the more implementation-efficient approach, by uni-
formly obtaining Nt time-domain samples and detecting the Fourier
coefficients by computing the Fast Fourier Transform (FFT) of this
ensemble, is advised instead. Depending on the application different
implementation strategies based on modular Commercial-Off-The-
Shelf (COTS) components can be followed. An ADC converts the
transducer signal to a digital representation with Nyquist rate. A
microprocessor or a Field Programmable Gate Array (FPGA) may
then be used to compute the FFT and to perform the compression
step by selecting the relevant coefficients. However, if many channels
are to be considered an FPGA offers advantages in hauling the data
at bulk. As the A-scan shot rate is small compared to common
processing clock rates pipelining can provide benefits. An extensive
overview on different implementation approaches is given in [11].
As the task is fully determined at design-time and unlikely to
change in the field, implementation in form of an Application
Specific Integrated Circuit (ASIC) based on Complementary Metal
Oxide Semiconductor (CMOS) technology is promising and offers
advantages in cost, power dissipation and performance [12].

Another very interesting approach is introduced in [13], where
an analogue/mixed signal implementation of an FFT processor,
realised in integrated silicon technology, is shown. Using sample-
and-hold amplifiers as means of storing analogue signal values, the
structure of digital FFT processors can be applied to analogue signal
processing. The adders and multipliers required can be implemented
with relatively few transistors compared to their digital counterparts,
saving power at the cost of computation accuracy.

I/Q-sampling is utilized in [9] to reduce the sampling rate.
Although the mathematics of homodyne sampling promises ideal
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performance, equivalent to Nyquist-rate baseband sampling, real-
world implementations suffer from hardware imperfections such as
Local Oscillator (LO)-leakage and I/Q path imbalance, as commonly
known from their use in communication systems. Also, in practice
a measurement system has to support a wide range of transducer
specifications with a multitude of different pulse bandwidth and
center-frequency values, thus requiring a high degree of flexibility
when applying I/Q-sampling. As neither the ADC and the FFT
processing system is close to technological limits we propose to
instead implement a simple baseband-sampler operating at rate
sufficiently high to support different transducers. As the compression
method is able to compensate oversampling, this approach allows
to achieve high linearity at a reasonably low hardware effort,
thus achieving good implement efficiency while maintaining full
flexibility.

The next section will outline how to choose J in theory and
what recovery guarantees one can expect from this choice.

III. MEASUREMENT DESIGN
III-A. Random Fourier Sampling

The recovery performance of sparsity exploiting algorithms and
the used compression strategy can be measured in terms of the RIP,
if a signal y is sparse in an orthonormal basis H , which means that
in b = Hx the vector x is sparse. If on the other hand x is sparse,
but H is not a basis anymore, but only an overcomplete dictionary,
then the so-called H-RIP [14] yields the natural framework for
reconstruction guarantees.

If we consider a single A-scan vector bx,y recorded at an arbitrary
but fixed measurement position (x, y) the pulse-echo model in (1)
results in bx,y being a linear superposition of shifted versions of
the inserted pulse. It follows that bx,y = Gαx,y and according to
our compression scheme yx,y = FJΣGαx,y , where the columns
of G are the discretized and shifted versions of the inserted pulse.

Now, since the total number of defects in the specimen is assumed
to be small, i.e. a in (1) being sparse, we have that each αx,y is
sparse as well. This implies that each bx,y is sparse in the dictionary
G. Let now ŝ = maxx,y ‖αx,y‖0. However, the sparsity is not
prevalent with respect to a basis but generally to an overcomplete
dictionary G. This sparks the need for a modified reconstruction
guarantee presented in the next definition.

Definition III.1 (G-RIP, [14]). Let Uk be the union of all subspaces
spanned by all subsets of k columns of G. The measurement matrix
Φ obeys the restricted isometry property adapted to G with constant
δ, if

(1− δ)‖y‖22 6 ‖Φy‖22 6 (1 + δ)‖y‖22 for all y ∈ Uk.
We call the smallest δ for which above chain of inequalities holds
the restricted G-isometry constant (G-RIC) δGk .

The following result calculates the H-RIC for the matrix A⊗
INxNy and as such it delivers necessary conditions for efficient,
stable and robust recovery to happen.

Lemma III.1. For each k ∈ N it holds that that the G-RIC δGk of
the matrix A and the H-RIC of Ψ = A⊗ INxNy are equal.

Proof. From the definition of δGk and the vectors yx,y we have for
every (x, y) that

(1− δGŝ )‖yx,y‖22 6 ‖Ayx,y‖22 6 (1 + δGŝ )‖yx,y‖22.
Together with the definition of Ψ and yx,y and the properties of
the Kronecker product the statement directly follows by applying

‖a‖22 =

N∑
i=1

‖ai‖22 for a = [aT
1 , . . . ,a

T
N ]T

twice.

The lemma above illuminates how, given the proposed sensing
scenario, only the properties of the A-scans and their sparse
representation influence the recovery performance. Additionally,

only the worst A-scan in the sense that it is the least sparse one
determines the worst case performance. Now, since randomly sub-
selected Fourier matrices are known to have a low G-RIC (as
outlined below), Lemma III.1 shows that the recovery performance
and also the number of necessary measurements follows. Moreover,
one is able to determine the magnitude |J | such that the G-RIP of
the appropriate order holds with a high probability, which delivers
stable, robust and efficient recovery. This is also formalized in [14],
where it is shown that δGŝ < 0.08 is a sufficient condition for stable
recovery to happen in every A-scan. As outlined in [10], for a
uniformly randomly generated set J with

|J | > Cŝδ−2 log2(1/δ) logNz log(ŝ) log2(ŝ/δ)
the matrix FJ satisfies the standard (not G) RIP with constant δ
with high probability for sparsity order ŝ. Now, [15] shows that
if the matrix FJ satisfies the RIP of order k with constant δ, the
matrix FJΣ is a 4δ-almost isometry on any set S of fixed points
with |S| = C exp(k), meaning

(1− 4δ)(‖x‖22) 6 ‖FJΣx‖ 6 (1 + 4δ)(‖x‖22)

for all x ∈ S. This directly implies together with δHŝ < 0.08
and Lemma III.1 applied for A = FJΣ the minimal number of
measurements to satisfy

|J | > Ĉ logNz ŝ log(ŝ) log2(50ŝ).
We would like to stress the fact that in the above analysis we
derived a performance bound for the 3D reconstruction process,
while only dealing with the restricted isometry constants associated
to the dictionary of the single dimensional A-scans. In other words,
since we are only compressing / subsampling in one dimension,
this dimension alone determines the reconstruction performance.
Further, the choice of |J | in a practical setup can be based on a
worst-case number of defect echoes that are expected to appear in
a single A-scan. Since usually the number of defects is small, even
some safety margin will still result in large compression.

III-B. Knowledge Aware Fourier Sensing
So far, we only considered the question of how many Fourier

coefficients need to be sampled such that recovery is guaranteed
when pursuing a random sampling scheme. However, this does
not take any prior knowledge about the signals we compress into
account. Since we know what waveform h(·) we insert into the
specimen, which we have to supply to the transducer in order to
excite the medium, we have a rough estimate of the spectrum of the
received data after traveling through the medium and being reflected.
So, the above presented sensing mechanism, which we call random
uniform from now on, does not exploit all prior knowledge about
the system at hand.

Since we approximately know the energy distribution of the
measurements in the spectral domain from the inserted pulse h(·),
we can use this approximate spectral density to maximize the
quantity

‖y‖2
‖ vec b‖2

which measures how much energy is conserved / lost during the
compression step. This is an approximation because attenuation
and interference can lead to some parts being weaker than others
compared to the way we excited. To this end, we propose two new
sensing schemes, which are able to account for the knowledge of ĥ
in (5). Since both exploit knowledge about the spectrum of the bx,y
we set Σ = INz to avoid any change in the spectrum. The first one
makes the sensing design a deterministic process by selecting the
Fourier coefficients of each bx,y indexing the k largest (in absolute
value) elements in ĥ. We call this procedure the max approach. The
second sensing scheme in some sense mediates between random
uniform and max by still randomly selecting the set J , but now
according to the spectral density |ĥ|/‖ĥ‖1 of the inserted pulse
h(·), which we readily interpret as the density for the sampling of
the Fourier coefficients. Since in our model (1) the A-scans contain
shifted versions of the pulse h(·), the spectrum of the observed bx,y
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Fig. 1. Mean spectrum of the measurements bxy and spectrum of
the modeled pulse ĥ. The latter is used as pdf for the energy based
strategy.
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Fig. 2. Normalized energy of the measured frequency samples
depending of the chosen strategy for different compression ratios γ.

can be approximated by |ĥ|. With this energy based approach the
probability for a Fourier coefficient to be in the set J is determined
by the amplitude we expect it to have.

The following section deals with the comparison of these
three methods in terms of energy conservation and reconstruction
accuracy.

IV. RECONSTRUCTION RESULTS

We now carry out numerical simulations based on prerecorded
fully sampled measurement data of a steel specimen. The material
parameters are the same as in [5][Table II]. The compression is
simulated in software [16], [17] by applying Ψ to vec(b), where
b is the 3D measurement data of the above specimen. We define
γ = Nt/(2|J |) as the compression ratio, where the factor 1/2 is
due to the fact that we choose J only from the non redundant part
of the spectrum of the real valued b.

To illustrate the sampling strategies further, Fig. 1 depicts the
average over (x, y) of the absolute value of the spectrum of the
measurement data bx,y . As a comparison, we plot the Fourier
coefficients ĥ, which we know from the inserted pulse. Their
amplitudes are used for both our proposed strategies. As such,
ĥ constitutes the prior knowledge we assume to have during the
measurement design process. Qualitatively, our estimated ĥ succeeds
in approximating the spectrum of the real data, which indicates that
basing our measurement design on ĥ is a valid approach. Fig. 2
shows the normalized remaining signal energy after compression
for the three strategies. For the two random strategies we averaged
over 100 realizations. We see that we can increase compression
up to γ = 10 until the two proposed approaches start to reduce
the energy in the measurement, while due to the nature of uniform
sampling, the random uniform approach immediately decreases the
energy with increasing compression.

The goal is now to reconstruct the sparse vector a given y using
one of the above strategies. We compare two different approaches:

aSAFT = bΨH(y) (6)

min
a
‖y − fΨH(a)‖22 + λ‖a‖1, (7)

In the uncompressed case SAFT constitutes to applying the backward
HT to the measurement data vec b. Interestingly, this still holds
true if we apply the linear compression Ψ. Accordingly, (6) results
in a SAFT reconstruction of the compressed measurements.

To approximate a solution to (7) we use the STELA algo-
rithm [18]. STELA requires the Euclidean norm of the columns of
ΨH . Since we do not compute the elements of ΨH explicitly, we
need to approximate the norm of its columns. From (2), (5) and
the definition of H it can be seen that

‖[ΨH]k‖22 = ‖
[
[FJ ⊗ INxNy ]H

]
k
‖22

6 ‖ĥJ‖22
∑
x,y

gx,y(xk, yk, zk)

≈ ‖ĥJ‖22
2π

( 1
2

tan(α)zk)2∆x∆y

(8)

where [ΨH]k is the k-th column of the matrix ΨH and
(xk, yk, zk) is the defect position corresponding to the k-th grid
point. To compute the third line, we use that

∑
x,y f(x, y) =

∆x∆y
∫
f(x, y)dxdy if for x2+y2 →∞ it holds that f(x, y)→ 0

fast enough. Further, we chose λ in (7) as λ = max |bΨH(y)| · β
with 0 < β < 1.

Figure 3 and 4 show the volumetric reconstruction results in
two different projections for all mentioned reconstruction schemes.
The code to reproduce these figures is freely available at [8]. In
all cases we only use 2% of the data. Fig. 3 shows a C-scan view
(projection on the x-y plane) of the complete specimen. A sketch
of the ground truth is in the top figure. Fig. 4 shows a B-scan
view (projection on the x-z plane) zoomed to the oblong hole on
the very left of the specimen. As a first observation from Fig. 3
it can be seen that a SAFT reconstruction from the compressed
data is possible. All defects are clearly visible in the SAFT image.
However, compared to the sparsity-based reconstruction, SAFT
produces images that are much less focused. The edges of the
defect are much better preserved in the sparsity-based reconstruction.
Comparing the different sampling strategies, it can be seen that the
random uniform approach produces artifacts and false negatives.
Two of the small flat bottom holes on the right are missing. The
C-scans of the sparsity-based reconstruction using the max and the
energy-based strategies show almost no differences.

However, moving to the B-scan views in Figure 4, it can be seen
that the focusing along the z-axis varies more depending on the
sampling strategy. Further, sparsity-based reconstruction results in a
better focusing compared to SAFT. The random uniform approach
leads to the best focusing in depth, since due to the whitening
introduced through Σ the bandwidth is larger compared to the other
two strategies. For the max approach the bell-shaped density of
the pulse model in frequency domain for higher compression leads
to a smaller sampled bandwidth. This reduces the resolution in
z-direction in the reconstruction. However, choosing the |J | largest
coefficients is superior to the random uniform approach regarding
the performance along the x-y-plane. So, our simulations support
the claim that the energy based strategy mediates between those
two strategies leading to the best overall results.

V. CONCLUSION
In this paper, we showed that the conventional Fourier based

approach can be improved by including prior knowledge during
the sampling process. To this end, we incorporated the prior
knowledge of the spectrum by proposing two novel strategies,
i.e. a deterministic and a probability based subsampling strategy.
As we showed numerically, for ultrasonic NDT measurements
fairly high compression ratios still lead to good reconstruction
results. Moreover, the focusing along the z-axis highly depends on
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Fig. 3. Reconstruction results in x-y plane (C-scan view). The top
figure shows a sketch of the specimen with dimensions 180.5 mm×
35 mm and the depicted flat bottom holes. Second from top: SAFT
with γ = 50 and strategy max. The remaining three show STELA
reconstructions with parameters: β = 0.2, γ = 50 after 10 steps
using the compression strategies max, random uniform and energy
based, respectively.

Fig. 4. Reconstruction results in x-z plane (B-scan view) zoomed
to the oblong hole on the very left. Top: SAFT with γ = 50 and
strategy max. The remaining three show STELA reconstructions with
parameters: β = 0.2, γ = 50 after 10 steps using the compression
strategies max, random uniform and energy based, respectively.

the sampling strategy chosen. Especially the hybrid energy-based
approach unifies the advantages of the two other strategies, i.e. good
resolution across all spatial dimensions. Additionally, due to this
probabilistic approach it can also deal with irregularities in the
medium that are not captured by the model, thus making it more
robust to unexpected effects during wave propagation.

Further, we showed how formulating SAFT as a matrix-vector
product makes it applicable to compressed Fourier measurements,
which extends this well studied method to more sophisticated mea-
surement approaches. We discussed our proposed architecture with
regards to multiple hardware implementation strategies, outlining
a path to a cost- and energy-efficient implementation in integrated
mixed-signal CMOS technology.
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