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Abstract—Convolutional neural networks (CNN) are applied
to the time-harmonic electromagnetic diagnostic of a dielectric
micro-structure. The latter consists of a finite number of circular
cylinders (rods) with a fraction of wavelength radius that are set
parallel to and at sub-wavelength distance from one another.
Discrete scattered fields are made available around it in a free-
space multisource-multireceiver configuration. The aim is to
characterize this micro-structure, like positions of rods or their
absence, and in effect to map their dielectric contrasts w.r.t. the
embedding space. A computationally efficient field representation
based on a method of moments (MoM) is available to model the
field. Iterative, sparsity-constrained solutions work well to find
missing rods, but may lack generality and need strong priors. As
for time-reversal and like noniterative solutions, they may fail to
capture the scattering complexity. These limitations can be allevi-
ated by relying on deep learning concepts, here via convolutional
neural networks. How to construct the inverse solver is focused
onto. Representative numerical tests illustrate the performance
of the approach in typical situations. Comparisons with results
from a contrast-source inversion (CSI) introduced in parallel are
performed. Emphasis is on potential super-resolution in harmony
with subwavelength features of the micro-structure.

Index Terms—convolutional neural networks, micro-structure,
super-resolution imaging, inverse scattering problem

I. INTRODUCTION

Much attention is devoted nowadays to the characterization
of micro-structures from electromagnetic fields which they
may radiate or scatter. Without exhaustivity, examples have
been analyzed in a strong mathematical framework [1], [2],
yet corresponding computational approaches may be lacking
still. Neural networks have been applied to inverse scattering
since a long time [3], yet as computer resources increase, deep
ones for real-time inverse scattering problems look promising.

The example investigated here is mapping a 2D cross-
section of a finite-sized dielectric micro-structure exhibiting
subwavelength features from time-harmonic scattered fields
collected outside when illuminated in a multistatic mode of
operation. It is prone to super-resolution since the elements

in the micro-structure, as developed next, are subwavelength-
sized and lie at subwavelengths from one another, and to map
the microstructure at better than half-a-wavelength resolution
thus is the key challenge and the main goal of the work.

The situation is simple enough to be appraised even if
the underlying physics (e.g., possible occuring of open-cavity
resonances) may not be so simple, yet is general enough to
open the door to more demanding configurations, proven that
the tools brought to the fore are fast, accurate and robust
enough with the least amount of priors and constraints when
employed.

The contribution is organized as follows. The scattering
problem is detailed in section II. A deep learning procedure,
inspired to an extent from [4], [5], involving convolutional
neural networks (CNN), is set up and a convenient architecture
of a network that applies to the present situation is provided
in section III. How to handle the mapping via a well-known
approach, the contrast-source inversion (CSI) [6], which yields
a map of the dielectric contrast in a region of interest, is
sketched in section IV —emphasize that there exist more
powerful inversion tools, especially to deal with stronger
contrasts, CSI is simply a handy tool among many options.
Results of testing CNN on synthetic data are displayed in
section V with comparison to those provided by CSI. A brief
conclusion with outline of future works follows in section VI.

Notice that works involving two of the authors have been
led on a similar scattering situation, but focus was on time-
reversal and sparsity-based solutions in the peculiar case of
looking for interior sources [7] or missing rods [8].

II. FORMULATION OF THE PROBLEM

The structure under study is sketched in Fig. 1. The scat-
terers consist of a finite number of infinitely-long circular
cylindrical rods within a region of interest (ROI) in air with
permittivity ε0 and permeability µ0. The radius of each rod is
r, and the distance between two adjacent rods is d. Each rod is
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Fig. 1. Sketch of the inverse scattering problem, R represents the receiving
antennas and T the transmitting antennas, rods are distributed in the ROI.

assumed to be homogeneous, isotropic and non-magnetic. Dif-
ferent rods may have different relative permittivities, denoted
as εr(r). These scatterers are illuminated by time-harmonic
transverse-magnetic waves generated by Ni ideal transmitters
in turn at frequency of operation f . For each such illumination,
the scattered fields are collected by Nr receivers on S. The
inverse scattering problem is to determine shape, position, and
dielectric properties in the ROI from those fields.

The scattering phenomenon can be appraised, as traditional,
from two integral equations. The first one is the state equation,
with only the pth transmitter illuminating the ROI,

Ep(r) = Einc
p (r)+k20

∫
D

g(r, r′)χ(r′)Ep(r
′)dr′, r ∈ D, (1)

where Ep(r) is the total electric field, Einc
p (r) is the incident

field, k0 is the wavenumber in air, and g(r, r′) is 2-D scalar
Green’s function, χ(r) is the contrast defined as εr(r)−1. The
second equation is the observation equation

Esca
p (r) = k20

∫
D

g(r, r′)χ(r′)Ep(r
′)dr′, r ∈ S, (2)

where Esca
p (r) is the scattered field.

Retrieving the relative permittivities εr(r)(r ∈ D) from
measured scattered fields, Esca

p (r), p = 1, 2, . . . , Ni, is non-
linear and ill-posed, and is usually cast into an optimization
problem solved iteratively. A regularization strategy is often
used to get a stable solution, thus the problem becomes

Min : f(εr(r)) =

Ni∑
p=1

‖F (εr,Einc
p )−Esca

p ‖2 + γ‖εr‖2, (3)

where F denotes the process of solving forward problem and
Tikhonov regularization is standardly chosen as regularization
method with the regularization parameter γ.

III. CNN INVERSE SCATTERING APPROACH

CNN have strong modeling capabilities and real-time recon-
struction can be achieved when the network is well-trained.
The network itself can realize the mapping from the scattered
field to the distribution of the permittivity, thus there is no
need of modeling. The proposed approach is detailed below.

A. CNN architecture design

64
128

256
128

1

Nin Nout

5*5 Conv + BN +Relu +2*2 Max pooling 

Fully-connected
5*5 Deconv+Sigmoid

Nin Number of input channels
Nout Number of output channels

Fig. 2. Architecture of the proposed convolutional neural networks

The architecture as shown in Fig. 2 involves three main
parts. The first part consists of three repeated blocks, and
each block contains one 5× 5 convolutional layer, one batch
normalization (BN) layer, one rectified linear unit (ReLU) and
a 2×2 max-pooling. The second part is a fully-connected layer,
which combines all the information of the previous layer. It
is important since every pixel in the reconstruction map is
related to all the measured data. The last part is composed of
one deconvolutional layer with a sigmoid activation function.

A convolutional layer has strong local modeling capabilities
with a small number of parameters. BN is used to normalize
the input layer and hidden layer by adjusting and scaling
the activations, which can speed up the learning. ReLU, a
non-saturated function, is chosen as the activation function to
avoid vanishing gradients and to accelerate the convergence
speed. Each convolutional layer is followed by a max pooling
layer to reduce the data dimension. Using the deconvolutional
layer is to generate an image representing the distribution of
permittivity. To be mentioned, since the output range of the
sigmoid function is (0, 1), a linear transform is needed here
so that the output range fits the range of permittivities.

B. Training data sets

The approach is evaluated on four different datasets: 2
configurations are set for both the number of the rods (16
vs. 36) and the permittivity range ([1, 2] vs. [1, 3]). The
permittivity value of each rod is generated randomly, while
the radius r and the distance d are kept constant, chosen as
λ/12 and λ/4 respectively, with λ representing the wavelength
in free space. Each training set contains 3000 samples, each
one is collected from 72 receivers when illuminated by 36
transmitters at 3 GHz frequency set on circles of radius
0.76 m and of radius 0.72 m. For all datasets, the input of
the network, namely the scattered field, is computed by a
method of moments (MoM) with pulse basis and delta testing
functions, corresponding with a ROI D divided into M ×M
square cells. Gaussian noise with SNR of 30 dB is added to the
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synthetic data. In this work, only the real part of the scattered
field is used as the input and as array of [36, 72]. Relative
permittivities are exhibited according to the pixel basis as
the expected output of the network with a shape of [50, 50].
We take another 100 samples to test the performance of the
network for each case.

C. Loss function

The loss function combines the misfit between predictions
and the ideal output of the network and a regularization term

LOSS =
1

N

N∑
i=1

‖εir − ε̂ir‖2 + α
P∑

j=1

W2
j , (4)

in which N is the number of samples and P is the number of
layers. For the ith sample, ε̂ir and εir are the prediction value
generated from the CNN and the ground truth, respectively.
Wj are the weights of jth layer, and α is a hyper-parameter
to balance the trade-off.

D. Training method

The network is trained by the Adam algorithm [9], which
is an adaptive learning rate optimization algorithm designed
specifically for training deep neural networks. It derives from
optimization methods AdaGrad [10] and RMSProp [11]. Adam
is more computationally efficient and the hyper-parameters are
easy to choose. For completeness, it operates as follows:

Algorithm 1 ADAM optimization method
1: Initialize the biased first moment estimate and biased

second raw moment estimate mt = 0, vt = 0;
2: Initialize the hyper-parameter β1 = 0.9, β2 = 0.999, δ =

10−8, β1, β2 are exponential decay rates;
3: Update t = t+ 1; mt = β1mt−1 + (1− β1)gt, gt is the

gradient of loss function w.r.t. W;
4: Update vt = β2vt−1 + (1− β2)g2

t ;
5: Compute bias-corrected moment estimates,

m̂t = mt/(1− βt
1), v̂t = vt/(1− βt

2);
6: Update the parameters Wt = Wt−1 − αmt/(

√
v̂t + δ) ,

α is exponential decaying stepsize;
7: ‖Wt −Wt−1‖2 < ξ, stop, otherwise, repeat steps from

3 to 6.

IV. ITERATIVE METHOD - CSI METHOD

One of the most widely used methods to tackle an inverse
scattering problem is the CSI method, refer to [6], which is
based on source-type integral equations:

Jp(r) = χ(r)
[
Einc

p (r) +Gd(Jp)
]
, r ∈ D, (5)

Esca
p (r) = Gs(Jp), r ∈ S, (6)

where the contrast source Jp(r) = χ(r)Ep(r) is regarded as an
independent parameter. Gs(·) and Gd(·) are operators defined
as

Gs(Jp) = k20

∫
D

g(r, r′)Jp(r
′)dr′, r ∈ S, (7)

Gd(Jp) = k20

∫
D

g(r, r′)Jp(r
′)dr′, r ∈ D. (8)

The cost function here is a linear combination of normalized
mismatches in the data equation and in the state equation.

L(J1, . . . ,JNi
, χ, β) =

∑Ni

p=1 ‖ Esca
p −Gs(Jp) ‖2∑Ni

p=1 ‖ Esca
p ‖2

+ β

∑Ni

p=1 ‖ χEinc
p + χGd(Jp)− Jp ‖2∑Ni

p=1 ‖ χEinc
p ‖2

,

(9)

Here we simply set β = 1 to give the two kinds of errors the
same weight.

The cost function is minimized iteratively by alternately
updating contrast source and contrast, thus there is no need
to solve the forward problem and the optimization procedure
becomes more efficient. The initial guesses for the two vari-
ables are calculated by backpropagation as [7]:

Jbp
p =

‖ G∗s(Esca
p ) ‖2

‖ Gs(G∗s(E
sca
p )) ‖2

G∗s(E
sca
p ), (10)

χ =

∑Ni

p=1 J
bp
p E∗p∑Ni

p=1 |Ep|2
, (11)

where Ep = Einc
p +Gd(J

bp
p ), E∗p is the conjugate of Ep and

G∗s(·) is the adjoint operator of Gs(·).

Fig. 3. Maps provided by CSI. Top to bottom: ground truth, CSI result. Left
column d = λ case, right column d = λ/4 case.

Here the contrast source is updated by a conjugate gradient
method and then the contrast is calculated directly. Several
tests have been performed to evaluate the CSI performance
for different distances between rods, the relative error for each
case being computed according to

ERR =
1

n

n∑
i=1

‖εir − ε̂ir‖2

‖εir‖2
, (12)

where n is the number of test samples.
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Illustrative errors are given in Table I. CSI maps with d = λ
and with d = λ/4 are displayed in Fig. 3; the latter illustrate
that CSI can achieve a rather good result when the distance
between rods is equal to or larger than λ, but fails when the
rods are closer to one another. In contrast, the CNN-based
method can succeed in that case, as shown thereafter.

TABLE I
ERRORS OF RECONSTRUCTION ERR USING CSI

distance between rods: d λ/4 λ/2 λ 2λ
relative error 0.0282 0.0032 0.0011 5.7 10−5

V. RESULTS

Table II shows the relative error ERR of CNN for d =
λ/4, in which case CSI cannot achieve good reconstruction,
in four different cases, in which the highest relative error is
0.00452. Fig. 4 offers two examples of a 16-rod case, one for
the lower permittivity and one for the higher permittivity, and
Fig. 5 offers two examples of a 36-rod case, one for the lower
permittivity and one for the higher permittivity.

TABLE II
ERRORS OF RECONSTRUCTION ERR USING CNN FOR d = λ/4

relative permittivity 1-2 1-3
Example of 16 rods 0.00275 0.00116
Example of 36 rods 0.00446 0.00449

Overall, CNN achieves an accurate permittivity reconstruc-
tion in the four cases studied, both in terms of localization
of rods and retrieval of their contrasts with respect to the
embedding and to one another, even if with noisy data as
used. In effect ground truth and the retrieved map are almost
indistinguishable, as epitomized by the square-norm errors
correspondingly provided. The implementation is based on
TensorFlow, the batch size is set to 100 and the learning is
stopped after 6000 iterations (200 epochs). The GPU that we
use is NVIDIA GEFORCE GTX 1080, which takes about 14
minutes for the training of the network. With a well-trained
network, it takes less than 1 second to get the evaluation
of contrast map, which means that a real-time diagnostic is
achieved.

As for CSI, as mentioned in the above, it mostly fails to
capture the dielectric distribution of the micro-structure, some
rods appear here and there, but there is no rule in that, whereas
the maximum contrast values reached are less than the true
ones. But we should emphasize that a priori information of
these two methods are different.

Other examples, with different micro-structures in terms of
contrast, number, size and inter-distance of the rods, and with
different measurement configurations encompassing aspect-
limited data in particular, will be shown at the time of
presentation.

Fig. 4. Maps provided by CNN compared with those provided by CSI
for examples involving 16 rods. Top to bottom: ground truth, CNN result,
CSI result. Left column: Example 1 with lower permittivity. Right column:
Example 2 with higher permittivity.

Fig. 5. Maps provided by CNN compared with those provided by CSI for
examples involving 36 rods. Same as in Fig. 4.
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VI. CONCLUSION

Imaging of a dielectric micro-structure has been investi-
gated. With respect to an implementation of contrast-source
inversion, an inverse solver based on convolutional neural
networks exhibits super-resolution features in the sense that
the fact that the structure is subwavelength both in terms of
size of elements and inter-element distance does not impair
its mapping. Also it applies to a wide range of geometrical
and electrical properties of the elements, which may not be
possible if one uses sparsity-constrained methods as recently
proposed [12], while it does not suffer from intrinsic limita-
tions of backpropagation-based methods. Obviously good care
must be taken so as to avoid that the neural network becomes
too much tuned to a given situation, and then loses generality.
Yet the same could be said with contrast-source inversion,
used as reference here, with the more constraints enforced,
the better results expected.

The case considered here is avowedly limited in terms of
scattering phenomenon since reduced to a two-dimensional
transverse-magnetic scalar one, yet the approach is not limited
to it. A full three-dimensional vector wave situation in which
rods are now finite in length has been considered as of
recently, with specialization to metallic rods [8] for which
resonances can appear in specific wavebands and thus facilitate
super-resolution. The main hurdle here is not about devising
the networks but to achieve a direct even approximated fast
computational modeling of the fields. Investigations along that
direction, now both from synthetic and experimental data in
anechoic chambers, will be led in the near future.
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