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Abstract—4D arrays provide cost-effective beam steering ca-
pabilities considering radio-frequency switches (controlled by
periodic sequences) instead of variable phase shifters. Their
synthesis is based on the Fourier coefficients (which depend
on configurable time parameters) of the corresponding periodic
modulating sequences. Whereas Fourier series use trigonometric
functions to synthesize any periodic continuous waveform, Walsh
series relies on bipolar orthogonal sequences and, if such a series
is truncated, the expanded function is approximated by a stair-
step signal. In this paper we present a novel method to synthesize
4D arrays by means of a finite set of Walsh functions. The
technique allows for implementing the analog time-modulated
feeding network of an array employing single-pole double-throw
switches and achieves excellent rejection levels of the undesired
harmonics.

Index Terms—4D arrays, time-modulated arrays, beam steer-
ing, Walsh functions.

I. INTRODUCTION

Among 4D antenna arrays, time-modulated arrays (TMAs)
employ in their feeding network radio frequency (RF) switches
governed by periodical sequences instead of conventional vari-
able phase shifters (VPSs) [1]. TMAs constitute an attractive
alternative for the design of smart antenna solutions, mainly
due to simplicity and cost-effectiveness reasons. The TMA
design is subject to a set of handicaps related to efficiency
issues that are not present in conventional arrays. More specif-
ically, the array designer must take into consideration critical
aspects such as the level of the unexploited harmonics [2],
[3], the presence of mirrored frequency diagrams (negative
harmonics) [4], [5] or the transmitted (and received) signal
energy wasted during the zero state of the switches [6], [7].

Some strategies to overcome the previous drawbacks focus
on the generation of a single pattern diagram over the first
positive harmonic frequency while minimizing the level of
the remaining harmonics and avoiding mirrored diagrams. The
idea behind such strategies is to approximate the TMA mod-
ulating waveforms by time-delayed sine functions. This can
be done either by using single-pole multiple-throw (SPMT)
switches and one-bit VPSs, by generating tristate (−1, 0, 1)
sequences [5], [8] (thus not solving the problem of the loss
of energy during the zero state), or by employing single-
pole dual-throw (SPDT) switches to generate bipolar (−1, 1)
sequences [9].

This latter solution exhibits an attractive efficiency because
the switches are never in zero state. Inspired by this idea,
we focus the contents of this paper on the synthesis of the

Fig. 1. Generalized architecture of the n-th element of the feeding network
of a TMA designed with Walsh functions.

approximated time-delayed sine waveforms which modulate
the individual elements of a TMA by means of bipolar se-
quences, more specifically, by means of Walsh functions [10],
[11], which constitute a complete set of orthogonal functions.
Therefore, any given function that fulfills certain requirements
(see Section II-B) can be expressed as a linear combination of
them. The coefficients of this linear combination are obtained
solving integrals similar to those of the Fourier coefficients
but using the corresponding Walsh function instead of sines
or cosines. Furthermore, analogously to the discrete Fourier
Transform (DFT), we can use the discrete Walsh Transform
(DWT) to obtain, in a more agile way, the Walsh coefficients.
Indeed, since Walsh functions may be written in matrix
notation using a Hadamard matrix, given a vector with samples
of the sine waveform to be approximated, the calculation of
the Walsh coefficients is reduced to products of matrices.
Accordingly, the degree of fidelity of a given approximated
sine waveform depends on the number of functions considered
in the Walsh expansion and raises a trade-off between the
efficiency of the beam steering and the complexity of the
antenna feeding network.

An additional advantage of using Walsh functions in the
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Fig. 2. The first six Rademacher functions.

TMA design is that the on/off control switching signals capa-
ble of generating the Walsh waveforms are easily generated
in the digital domain from a well known set of orthogonal
squared bipolar sequences: the Rademacher functions [12].

II. APPLICATION OF THE WALSH FUNCTIONS TO TMA
DESIGN

In this section we analyze how Walsh functions can be
applied to the design of the modulating waveforms in the TMA
technique.

A. Generation of the Walsh functions from Square Waves

The Rademacher functions are a set of odd orthogonal
bipolar square waves which can be derived from sinusoidal
functions. More specifically, Rademacher functions have the
form

ri(t) =

{
1 i = 0

sign[sin(2iπt)] i > 0,
(1)

being i ∈ N the order of the Rademacher function, sign[t] = 1
if t > 0 and sign[t] = −1 if t < 0 (see Fig. 2). These
functions, with frequencies 0, 1, 2, 22, . . . are easily generated
from a binary counter and, since they are odd, do not constitute
a complete set. However, a complete set of orthonormal func-
tions, the so-called Walsh functions wi(t), can be generated
from the Rademacher functions as follows [12], [13]1:
• For i ∈ {0, 1, 2}, wi(t) = ri(t).
• For i ≥ 3:

1) Write i in binary notation.
2) Compute the product of the Rademacher functions

corresponding to the positions with 1’s in the binary
representation of i, assigning r1(t) to the position
of the least significant bit.

For instance, if i = 5, then 510 = 1012, leading to w5(t) =
r3(t) · r1(t) (see Figs. 2 and 3).

1The Walsh functions generated by means of this procedure are said to be
arranged in natural order. Another way of arranging such functions is the so-
called sequence order, i.e., in ascending value of the number of zero crossings
found within the time base.

Fig. 3. The first eight Walsh functions arranged in natural order.

B. Determination of the Walsh Coefficients

A function f(t) which is absolutely integrable in [0, 1) can
be represented by a Walsh series expansion [10]

f(t) =
∞∑
i=0

Ciwi(t) (2)

being Ci the Walsh coefficients which satisfy the following
condition with respect to the integral square error

lim
M→∞

∫ 1

0

∣∣∣∣∣f(t)−
M∑
i=0

Ciwi(t)

∣∣∣∣∣
2

dt = 0. (3)

Taking into account the orthonormal property of the Walsh
functions, the coefficients of the Walsh series expansion are
determined as follows

Ci =

∫ 1

0

f(t)wi(t)dt, i ∈ N. (4)

If the series in Eq. (2) is truncated up to a finite index M , we
obtain an approximation of f(t) and a non-zero integral square
error. Furthermore, for numerical handling, it is interesting to
consider a discrete series of M = 2p terms (with p ∈ N) set
up by sampling f(t) at M equally spaced points tk over [0, 1)
with k ∈ Ψ = {0, 1, . . . ,M − 1}. Hence, the integration in
Eq. (4) can be replaced by the finite sum2

Ci =
1

M

M−1∑
k=0

f(tk)wi[tk], i ∈ Ψ, (5)

which constitutes the DWT. An additional key advantage in
computational terms is that, for a given i ∈ Ψ, the values

2By applying the trapezium rule on M sampling points xk and evaluating
the function f(tk)wi(tk).
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wi[tk] with k ∈ Ψ (see Fig. 3) form a sequence of 1’s and −1’s
constituting a specific row of a Hadamard matrix with order
M = 2p. The Hadamard matrices are constructed according
to the following recursive method

H2 =

[
1 1
1 −1

]
, H4 =

[
H2 H2

H2 −H2

]
, H8 =

[
H4 H4

H4 −H4

]
· · ·
(6)

By indexing the rows of a Hadamard matrix from 0 to M −
1, the discrete version of the Walsh functions are arranged
in the matrix according to a bit-reversal permutation of the
row indices. For example, if we consider p = 3, and hence
a Hadamard matrix with order M = 8, the row indices 0 to
7 have the corresponding binary representation 000 to 111; if
we reverse the order of the binary digits, we have 000, 100,
010, 110, 001, 101, 011, and 111, which correspond to 0, 4,
2, 6, 1, 5, 3, and 7. Hence, we have in the rows of such a
Hadamard matrix the Walsh functions w0[tk], w4[tk], w2[tk],
. . . , w3[tk], w7[tk], with k ∈ Ψ.

Hence, by considering a periodic (T0) function f(t)
absolutely integrable in [0, T0), by arranging M = 2p

equally spaced samples of f(t) in a column vector f̄ =
[f(t1), . . . , f(tM )]T , we can express –by virtue of Eq. (5)–
the corresponding DWT of f(t) through the following matrix
equation

L̄ =
1

M
HM · f̄ (7)

being L̄ a column vector with the Walsh coefficients (sorted
according to a bit-reversal permutation of the row indices) and
HM the Hadamard matrix with order M .

In the next sections, we will apply the DWT matrix expres-
sion in Eq. (7) to approximate the variable time-delayed sine
waveforms which time-modulate the excitations of an antenna
array.

III. TIME-VARYING ARRAY FACTOR CONTROLLED BY
WALSH FUNCTIONS

In this section, we apply Walsh synthesis to the design
of TMAs with beamsteering (BS) capabilities. The idea is
to approximate the functions which time-modulate the array
excitations (sine waveforms) by means of linear combinations
of the Walsh functions (easily implemented by SPDT switches
and fixed components). Hence, the time-varying array factor
will be expressed as a function of the Walsh coefficients of
such modulating waveforms.

We consider a linear TMA with N isotropic elements having
unitary static excitations In = 1, n ∈ {0, 1, . . . , N − 1}
to design a feeding architecture for the n-th TMA element
consisting of SPDT switches, fixed attenuators, and fixed delay
lines (see Fig. 1). In such a feeding network, the excitation of
the n-th antenna element is time-modulated by the periodic
(T0) pulse un(t) + jun(t− τ), being un(t) an approximation
of a sine waveform with fundamental frequency (ω0 = 2π/T0)
and τ a time delay defined beforehand.

The novelty of this work lies in the way to synthesize un(t),
which is done through the linear combination

un(t) =
M−1∑
i=0

Cniwni(t) (8)

where wni(t) is the periodic (T0) Walsh function wi(t) with
order i (see Fig. 3) and a time delay Dn, i.e., wni(t) =
wi(t − Dn), being Cni the corresponding Walsh coefficients
computed considering f(t) = un(t). Hence, f̄ = ūn in
Eq. (7). On the other hand, we consider the Fourier expansion
of each Walsh function

wni(t) =
∞∑

q=−∞
W q
nie

jqω0t (9)

being W q
ni the exponential Fourier series coefficients. By

substituting Eq. (9) into Eq. (8), we have

un(t) =
∞∑

q=−∞

[
M−1∑
i=0

W q
niCni

]
ejqω0t. (10)

If we select a delay τ verifying that ω0τ = π/2, then
e−jqω0τ = (−j)q and, by applying the time-shifting property
of the Fourier coefficients in Eq. (10), we obtain

un(t) + jun(t− τ) =
∞∑

q=−∞
[1− (−j)q+1]

[
M−1∑
i=0

W q
niCni

]
ejqω0t, (11)

Therefore, the architecture shown in Fig. 1 leads to the follow-
ing time-varying array factor (with the term ejωct explicitly
included) as a function of the modulating Walsh functions
parameters

F (θ, t) = ejqωct
N−1∑
n=0

[un(t) + jun(t− τ)] ejkzn cos θ

=
∞∑

q=−∞

N−1∑
n=0

M−1∑
i=0

1− (−j)q+1

√
2

W q
niCnie

jkzn cos θej(ωc+qω0)t

=
∞∑

q=−∞
Fq(θ)e

j(ωc+qω0)t (12)

where zn is the n-th array element position on the z axis, θ is
the angle with respect to such a main axis, k = 2π/λ repre-
sents the wavenumber for a carrier wavelength λ = 2πc/ωc,
and ωc is the carrier frequency. Notice that

Fq(θ) =
N−1∑
n=0

M−1∑
i=0

1− (−j)q+1

√
2

W q
niCnie

jkzn cos θ

=
N−1∑
n=0

Inqe
jkzn cos θ (13)

is the spatial array factor at the frequency ωc + qω0 and

Inq =
M−1∑
i=0

1− (−j)q+1

√
2

W q
niCni, n ∈ {0, 1, . . . , N − 1}

(14)
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are the corresponding dynamic excitations that synthesize the
radiated pattern at such a frequency.

IV. NUMERICAL SIMULATIONS

For our TMA BS design we assume that all the array ele-
ments are modulated by identical sinusoidal waves (or better
said, the same stair step approximations of such sine waves)
but subjected to different time delays. We will select the
delays so that the TMA dynamical excitations have progressive
phases, hence allowing for BS. Therefore, we only need to
carry out the Walsh synthesis of a single non-delayed sine
waveform with period T0 since when we consider the synthesis
of a sine replica with a delay Dn, it will consists of the
same set of Walsh functions as the non delayed version, but
individually subjected to Dn.

Firstly, we will perform the discrete Walsh synthesis of
f(t) = sin(2π/T0t). Without loss of generality, we assume
a normalized period T0 = 1. Bearing in mind Eq. (7),
by evaluating f(t) for M = 8 equally spaced points
in the interval (0, 2π], we have the column vector f̄ =
[f(π/8), f(3π/8), . . . , f(15π/8)]T , and by considering the
Hadamard matrix W8 we arrive at

L̄8 = (1/8) ·H8 · f̄ = [0, 0, 0, 0, 0.653, 0, 0,−0.271] (15)

being only L5 and L8 different from zero. Taking into account
the bit-reversal relationship between the index k−1 of Lk and
the corresponding Walsh functions, the only possible functions
involved in the synthesis are w1(t) and w7(t) (Fig. 3). Hence,
we approximate

f(t) = sin(2πt) ≈ 0.653w1(t)− 0.271w7(t) (16)

whereas un(t) in Eq. (8) can be expressed as

un(t) = 0.653w1(t−Dn)− 0.271w7(t−Dn)

= 0.653wn1(t)− 0.271wn7(t) (17)

being Cn1 = 0.653 and Cn7 = −0.271. Consequently, it is
possible to perform BS (see Fig. 1) with four SPDT switches
per antenna element. On the other hand, since the Fourier
coefficients W q

n1 and W q
n7 (Eq. (9)) of wn1(t) and wn7(t),

respectively, are zero for q even, it is satisfied that

1− (−j)q+1 =

{
2 q ∈ Υ

0 otherwise
(18)

where Υ is defined as Υ = {q = 4k − 3; k ∈ Z} =
{. . . ,−7,−3, 1, 5, 9, 13, . . . }. Hence, the frequency-mirrored
unwanted harmonics are removed (single sideband (SSB)
features) and we can express the dynamic excitations for each
harmonic pattern at ωc + qω0 (see Eq. (14)) as

Inq =
√

2(0.653W q
n1−0.271W q

n7), n ∈ {0, . . . , N−1} (19)

Since the signals un(t) applied to each antenna are delayed
replicas of each other, their Fourier coefficients will be equal
in modulus but different in phase. Hence, in view of Eq. (14),
since wn1(t) and wn7(t) have the same delay for a given q,

Fig. 4. Stair-step approximations of sin(2πt) considering the DWT with
M = 8 and M = 16 equally spaced points, respectively.

|Inq| is the same for all n, yielding a uniform linear array for
each frequency ωc + qω0, being q ∈ Υ.

If we consider a larger number of equally spaced points
M = 16, i.e., f̄ = [f(π/16), f(3π/16), · · · , f(31π/16)]T ,
and the Hadamard matrix W16, we have

L̄16 =(1/16) ·H16 · f̄ = [0, 0, 0, 0, 0, 0, 0, 0,

0.641, 0, 0,−0.053, 0,−0.127,−0.265, 0]T , (20)

Hence, using the aforementioned bit-reversal permutation, we
have that the functions involved in the sine synthesis are w1(t),
w7(t), w11(t), and w13(t) (see Fig. 3), arriving at

un(t) =0.641wn1(t)− 0.053wn7(t)

− 0.127wn11(t)− 0.265wn13(t). (21)

Given that the Walsh functions in Eq. (21) also satisfy Eq. (18),

Inq =
√

2(0.641W q
n1 − 0.053W q

n7 − 0.127W q
n11

− 0.265W q
n13), n ∈ {0, 1, . . . , N − 1}. (22)

Fig. 4 shows the stair-step modulating pulses un(t) for the
cases with M = 8 (Eq. (17)) and M = 16 (Eq. (21))
considering Dn = 0. Fig. 5 illustrates the relative power level
(expressed in dB) of |Inq| (see Eq. (19) and Eq. (22)), taking
|In1| as a reference for each case. We observe that the level
of the first unwanted harmonic for M = 8 at q = −7 is
−17 dB, whereas for the case with M = 16 decreases to
−23.5 dB at q = −15 (see also the corresponding radiated
patterns in Fig. 6). Notice that the level of rejection of the
side band radiation is significantly better than that obtained
in [5] for rectangular pulses (−13.98 dB). Hence, the use of
more points yields a 40 % improvement in the rejection of the
first unwanted harmonic at the expense of employing twice
the number of Walsh functions and, consequently, twice the
number of switches per antenna (trade-off between complexity
and performance).

Additionally, by defining the overall time-modulation ef-
ficiency as η = ηTMA · ηs [9], where ηTMA = P TM

U /P TM
R

(P TM
U and P TM

R are the useful and total mean power values
radiated by the TMA, respectively) accounts for the ability
of the TMA to filter out and radiate only over the useful
harmonics, whereas ηs = P TM

R /P ST
R (P ST

R is the total mean
power radiated by a uniform static array with N elements)
accounts for the reduction of the total mean power radiated
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Fig. 5. Relative power level of the TMA excitations for the different orders q
compared to that of the useful harmonic at q = 1 for the cases with M = 8
and M = 16.

by a uniform static array caused by the insertion of the TMA
switched feeding network. Notice that Walsh functions are
especially suited for the approximation of a sine function
by means of bipolar sequences and hence allow for strongly
attenuate those harmonics with a lower order (q = 3, 5).

Considering Inq in Eq. (19) and Eq. (22) in the formulas
given in [9], we have that ηTMA = 94.96% for M = 8 and
ηTMA = 98.72% for M = 16. Therefore, the use of more
SPDT switches provides a 4% improvement, arriving at ηs ≈
50.00% in both cases, hence leading to an overall efficiency
η(dB) = 10 log10(η) = −3.23 dB for M = 8 and η(dB) =
−3.07 dB for M = 16.

In summary, we observe that even if we employ more
switches, we have an upper limit in the efficiency imposed
by ηs. In other words, a reduction of the transmitted sig-
nal power is caused by the effect of time-modulating the
excitations with a stair-step waveform with respect to the
signal power transmitted by a uniform static array (notice
that the latter has no intrinsic BS ability). In spite of such
a limitation with respect to static arrays, it is remarkable
that the proposed technique is competitive when compared to
standard BS networks based on VPSs which exhibit insertion
losses and costs directly dependent on the carrier frequency
(recall that TMAs are limited by the signal bandwidth rather
than the carrier frequency [2]). Indeed, if we calculate the
total insertion losses of the proposed BS network by adding
to the sideband radiation (SR) losses 10 log10(ηTMA) and
the modulation efficiency losses, 10 log10(ηs), those losses
corresponding to the switching hardware (typically < 0.5 dB,
e.g. [14]) and to the fixed broadband phase shifters (also
< 0.5 dB [15]), we arrive at values significantly lower than
those found in commercial VPSs. As an orientation, insertion
losses in the millimeter wave band vary from 6 to 9 dB [16].

V. CONCLUSIONS

We have presented a novel approach to TMA design based
on the DWT. The method allows TMA architectures to offer
arbitrary angle BS by adjusting the switch-on instants, ex-
cellent levels of rejection of the undesired harmonics, and
competitive insertion losses when compared to standard BS
networks based on VPS.

Fig. 6. Relative power radiated pattern of TMAs designed by means of the
DWT for the cases with M = 8 and M = 16.
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