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Abstract—Standard methodologies for functional Magnetic
Resonance Imaging (fMRI) data analysis decompose the observed
Blood Oxygenation Level Dependent (BOLD) signals using voxel-
wise linear model and perform maximum likelihood estimation to
get the parameters associated with the regressors. In task fMRI,
the latter are usually defined from the experimental paradigm
and some confounds whereas in resting-state acquisitions, a seed-
voxel time-course may be used as predictor. Nowadays, most
fMRI datasets offer resting-state acquisitions, requiring multi-
variate approaches (e.g., PCA, ICA, etc) to extract meaningful
information in a data-driven manner. Here, we propose a novel
low-rank model of fMRI BOLD data but instead of considering
a dimension reduction in space as in ICA, our model relies on
convolutional sparse coding between the hemodynamic system
and a few temporal atoms which code for the neural activity
inducing signals. A rank-1 constraint is also associated with
each temporal atom to spatially map its influence in the brain.
Within a variational framework, the joint estimation of the neural
signals and the associated spatial maps is formulated as a non-
convex optimization problem. A local minimizer is computed
using an efficient alternate minimization algorithm. The proposed
approach is first validated on simulations and then applied to
task fMRI data for illustration purpose. Its comparison to a
state-of-the-art approach suggests that our method is competitive
regarding the uncovered neural fingerprints while offering a
richer decomposition in time and space.

I. INTRODUCTION

Context. Functional magnetic resonance imaging (fMRI)
non-invasively records brain activity by dynamically measur-
ing the blood oxygenation level-dependent (BOLD) contrast.
The latter reflects the local changes in the deoxyhemoglobin
concentration in the brain [1] and thus indirectly measures
neural activity through the neurovascular coupling. This cou-
pling is usually characterized as a linear and time-invariant
system and thus summarized by its impulse response, the
so-called hemodynamic response function (HRF) [2, 3]. Its
estimation links the observed BOLD signal to the underlying
neural activity, which can in turn be used to understand cog-
nitive processes in the healthy brain or to uncover functional
alteration in pathological condition. Nevertheless, as a voxel
contains about one hundred of thousands neurons for a typical
spatial resolution (1.5 mm isotropic) the underlying neural
activity signals are associated with possibly different temporal
fingerprints.
Related works. The classical data analysis approach pro-
poses to decompose the BOLD signal using multiple prede-
fined regressors. Each regressor is a time series that models

the given temporal signature of an experimental stimulus or
task, named condition, convolved with a canonical HRF [4].
Those time-courses are concatenated into a so-called design
matrix, and fitted to the observed BOLD data. The estimated
coefficients provide the encoding localization of each condi-
tion in the brain [4]. The main limitation of this massively
univariate approach is twofold: first, it treats one voxel at
a time using the same model; second, it requires the prior
knowledge of the experimental paradigm. For these reasons,
unsupervised multivariate methods have been introduced in
the literature to deal with paradigm-free fMRI datasets such
as resting-state recordings. The most famous are likely the
principal component analysis (PCA) [5] and the independent
component analysis (ICA) [6, 7]. However, all these techniques
directly work on the measured BOLD time series and do
not deconvolve them to highlight neural activities. An alter-
native consists in distangling the neurovascular coupling by
deconvolving the BOLD signal using a well chosen HRF [8–
10] and thus recovering voxel-wise neural activation signals.
Those approaches provide as many components as the number
of voxels. Those components are then used to explore the
underlying structure in the data by quantifying either how they
cluster together or their functional connectivity.

Goals and contributions. This paper presents a new algo-
rithm that aims to offer a rich decomposition of the BOLD
signal using low-rank sparse decomposition. Following the
ideas developed in the dictionary learning literature [11, 12],
our approach consists in modeling the observed BOLD signal
as a linear combination of a limited number of temporal atoms
whose first-order derivative is sparse. In that purpose, we
introduce spatio-temporal maps which take the neurovascular
coupling (temporal aspect) and the localization of activa-
tions (spatialization) into account. Then, we jointly estimate
those temporal atoms and the associated maps with properly
selected constraints. The resulting optimization problem is
non-convex but an approximated solution can be computed
using an alternate minimization algorithm with an efficient
procedure to be performed at each step.
Section II introduces our modeling of the BOLD signal
and presents our estimation algorithm. Next, our technique
is evaluated against state-of-the-art algorithm in Section III.
Conclusions and future work are discussed in Section IV.
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II. LOW RANK DECOMPOSITION OF THE BOLD SIGNAL

In this section, we present our modeling of the BOLD signal
and derive an efficient algorithm to estimate its parameters.
Notation. xi denotes the ith entry in vector x. Let T̃ =

T − L + 1, the convolution of two signals z ∈ R1×T̃ and
d ∈ R1×L is denoted by z ∗ d ∈ R1×T . For D ∈ RP×L,
z ∗̇ D ∈ RP×T is obtained by convolving each row of D
with z. We denote L the discrete integration operator such
that ∀z ∈ R1×T̃ , Lz = (

∑i
j=1 zj)i∈{1..T̃}.

A. Linear and time-invariant modeling

A common model for the multivariate (P voxels, T scans)
BOLD data X ∈ RP×T with X = (xj)j∈{1..P} is the linear
and time-invariant model (LTI) [3], where for each voxel, the
measured time series, denoted xj ∈ R1×T , is the convolution
of a neural activation signal, denoted ãj ∈ R1×T̃ with a given
HRF, here denoted v ∈ R1×L, such that xj = v ∗ ãj +
ej where ej ∈ R1×T refers to an additive white Gaussian
noise [13]. Typically, the HRF v has a restricted support in
time and quantifies the neurovascular coupling in a specific
region of the brain. For the sake of simplicity, the same HRF
shape is usually considered for the whole brain and we choose
the canonical SPMs double gamma function HRF, as mention
in [14]. This model extends as follows:

X = v ∗̇ Ã+E (1)

with E = (ej)j∈{1..P} ∈ RP×T and Ã = (ãj)j∈{1..P} ∈
RP×T . The activation signals Ã capture, in an univariate
manner, the periods of time during which some voxels are
involved in task performance (or in spontaneous BOLD signal
fluctuations). In this univariate model, P independent neural
activation signals (ãj)j ∈ {1..P} are learned, one for each
voxel. In our work, we propose to learn K temporal activations
(ak)k∈{1..K} and their associated spatial maps uk ∈ RP×1,
as we aim to recover K distinctive functional networks with a
specific temporal fingerprint. This can be modeled by replacing
each vector ãj in Eq. (1) with a linear combination of the
activations (ak)k∈{1..K}. A classical assumption for these tem-
poral activation signals is to consider them piecewise constant
as in [8–10]. To that aim, we model them as ak = Lzk,
where zk is sparse. The spatial configuration uk ∈ RP×1
encodes which voxels are linked to a given temporal activation
Lzk ∈ R1×T̃ . In our work, we propose a fixed HRF v and
define the rank-1 spatio-temporal maps ukv

> ∈ RP×V as
the convolution kernel with the neural activity, as depicted in
Fig. 1. Learning the HRF will be deferred to future work. Our
forward model for BOLD fMRI data thus reads:

X =
K∑
k=1

(Lzk)∗̇(ukv>) +E . (2)

Fig. 1: Illustration of the low-rank BOLD signal model (the
colors are there for illustrative purposes).

B. Optimization problem

The spatial maps (uk)k∈{1..K} and the neural activation
signal (zk)k∈{1..K}, from Eq. (2), can be jointly estimated
by solving the following constrained minimization problem:

J((uk)k, (zk)k) =
1

2

∥∥∥∥∥X−
K∑
k=1

(Lzk)∗̇(ukv>)

∥∥∥∥∥
2

F

+λ
K∑
k=1

‖zk‖1

subject to ‖uk‖1 = η and ukj ≥ 0 (3)

To be consistent with [8–10], we enforce the temporal atoms
(zk)k∈{1..K} to be sparse in order to constrain (Lzk)k∈{1..K}
to be piecewise constant signals. Indeed, most of experimen-
tal paradims in fMRI propose to model task-related evoked
activity using block signals. Moreover, to limit the indeter-
mination in the convolution we impose the non-negativity in
the entries of the spatial maps (uk)k∈{1..K}. Last, to deal
with the scale ambiguity – the fact that any solution pair
(ûk, ẑk) is known up to a multiplicative constant – we set
∀k ∈ {1..K} ‖uk‖1 = η, with η ∈ R+ being a parameter
of our method that fixes the magnitude of each spatial maps.
This optimization problem is biconvex in (uk)k∈{1..K} and
(zk)k∈{1..K}, meaning that it is convex in each variable but
not jointly convex. We minimize Eq. (3) using a block-
coordinate descent algorithm, where we alternate the mini-
mization between the two convex problems in (uk)k∈{1..K}
and in (zk)k∈{1..K}. Algorithm 1 details these two steps.

We minimize each step with an accelerated forward-
backward algorithm [15] with Armijo backtracking line search
[16]. Recall that for v ∈ R1×L, a ∈ R1×T̃ and x ∈ R1×T

∇z(
1
2‖x−v ∗a‖22) = −v� ∗ (x−v ∗a) with the time flipped

HRF v�j = vT̃−j , thus our gradient steps read:

∇z`
Fuk

(zk) = −L>
(
(u`v

>)�∗̇
(
X−

K∑
k=1

(Lzk)∗̇(ukv>)
))
,

∇u`
Fzk

(uk) = −v
(
(Lz`)

�∗̇
(
X−

K∑
k=1

(Lzk)∗̇(ukv>)
))
.

The computation of ∇z`
Fuk

(zk) is optimized by pre-
computing −L>(u`v>)�∗̇X and L>(u`v

>)�∗̇(ukv>)L
while that of ∇u`

Fzk
(uk) is accelerated by pre-computing

−v(Lz`)
�∗̇X and v(Lz`)

�∗̇v>(Lzk), as those quantities
remain constant during these respective steps.
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Algorithm 1: Low rank decomposition of the BOLD
signal.
Input: BOLD signal X , ε

1 initialization: z(0)
k = 0T̃ , u(0)

k = u
(init)
k , i = 1 ;

2 repeat
3 Estimate the temporal atoms z

(i)
k with fixed u

(i−1)
k :

argmin
(zk)k

1

2

∥∥∥∥∥X−
K∑
k=1

(Lzk)∗̇(u(i−1)
k v>)

∥∥∥∥∥
2

F

+λ
K∑
k=1

‖zk‖1

4 Estimate the spatial maps u
(i)
k with fixed z

(i)
k :

argmin
(uk)k

1

2

∥∥∥∥∥X −
K∑
k=1

(Lz
(i)
k )∗̇(ukv>)

∥∥∥∥∥
2

F

subject to ‖uk‖1 = η and ukj ≥ 0

5 until J((z
(i−1)
k )k,(u

(i−1)
k )k)−J((z(i)

k )k,(u
(i)
k )k)

J((z
(i−1)
k )k,(u

(i−1)
k )k)

≤ ε;

The proximal operator of gz((zk)k) = λ
∑K
k=1 ‖zk‖1 is

the soft-thresholding defined coordinate-wise as sign(z)(|z| −
λ)+. For the constraint gu((uk)k) = I‖uk‖1=η + Iukj≥0 on
the spatial maps, the corresponding proximal operator is given
by prox gu(uk) = [(ukj − µ)+]1≤j≤P with µ is defined as∑P
j=1 max{0, ukj − µ} = η and an efficient implementation

can be found in [17].
We early-stopped the main loop when each main iteration

does not decrease sufficiently the cost function. In practice less
than 50 iterations of the main loop were needed to converge.

Owing to the global non-convexity, this approach converges
to a local minimizer of Eq. (3), which may be sub-optimal
for our estimation objective. To initialize the spatial maps
(uk)k=1...K , we draw each entry as a centered Gaussian vari-
able with variance 1. To limit the impact of the initialization
selection, we run multiple times the minimization.

III. NUMERICAL EXPERIMENTS

In this section, we validate our approach on simulation and
illustrate its application to real fMRI data. All experiments
were performed in Python and our implementation1 as well
as the scripts2 for experimental validation are freely available
online.

A. Results on synthetic data

Artificial BOLD time series. We randomly generated
P = 100 BOLD signals X . Each time series xj was defined
as the linear combination of two temporal atoms (z1, z2)
comprising two blocks each whose duration was fixed to 10 s
and the magnitude was randomly drawn from a Gaussian
distribution centered on 1.0. The weights are defined in two
spatial maps(u1,u2) with a single non-zero pixel in each

1https://github.com/alphacsc/alphacsc
2https://github.com/eusipco_2019/eusipco_2019
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Fig. 2: (a) In black the observed BOLD signal within the
associated activation region normalized by their `∞ norm, in
blue the true temporal atoms, in orange the recovered temporal
atoms. (b) The yellow-purple maps define the spatial ground
truth and estimates. The standard deviation across voxels is
encoded by transparency around mean curves.
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Fig. 3: Localization in the right Precentral Gyrus region of
the two voxels (red crosses) chosen to illusrate the comparison
between TA and LRD methods.

map. To simulate a realistic scenario, we chose a TR of
1.0s and a total scan duration of 1min40s (T = 100 scans).
We added a centered Gaussian noise such that the generated
synthetic data has a signal-to-noise ratio of 1.0 dB, defined by
SNR = 10 log10

(
‖
∑K

k=1(Lzk)∗̇(ukv
>)‖22

‖E‖22

)
.

Results. For this experiment, we chose K = 2 and set
the regularization parameter λ to 0.4λmax, where λmax is
the minimal value for which 0 is solution of Eq. (3) and
we fix the `1-norm for each map to be equal to η = 10.0.
Fig. 2(a) displays the estimated temporal atoms (Lẑ1,Lẑ2)
in orange, along with the observed BOLD signals in black
and the true signals in blue. Fig. 2(b) shows the corresponding
spatial map estimates (û1, û2) besides the ground truth. The
temporal atom estimates recovered well the true signals. The
block offsets are correctly temporally aligned but the rising
and falling slopes of each block are not perfectly vertical.
This indicates that their temporal derivative (ẑ1, ẑ2) are not
perfectly sparse. The spatial maps are adequately recovered as
the activated regions are well localized and the map estimates
are sparse.

B. Results on real fMRI data

Comparison to Total Activation approach. We qualita-
tively compare our BOLD low-rank decomposition (LRD) to
the state-of-the-art method, called Total Activation (TA) [8].
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In this approach, the authors propose to deconvolve the
BOLD signal by minimizing a convex cost function that
involved a sparse temporal constraint and a total variation
spatial constraint. Their univariate approach allows to recover,
a voxel-specific piecewise constant signal that models the
neural activation signal as in our method. The main difference
between the two methods is that our multivariate technique
allows to recover a much easier-to-interpret decomposition of
this neural activation signal. To reduce the computational cost
of TA for this experiment, we only considered the temporal
regularization.

HCP task fMRI data. Our validation was performed on
the Human Connectom Project (HCP) dataset [18] which
comprises fMRI recordings of participants performing differ-
ent motor tasks. The tasks were adapted from the protocol
developed in [19]. We chose this dataset as it presented
both a good temporal and spatial resolution. A short time of
repetition (TR=720 ms) was actually used to collect interleaved
simultaneous multislice echo-planar images with a Multi-Band
factor of 8 and a spatial resolution of 2x2x2mm. Each fMRI
run lasted 3min34s in total during which T = 284 scans
were acquired. The fMRI data were already preprocessed
using a classical pipeline including realignment, coregistration,
spatial normalization and smoothing (5 mm isotropic). The
experimental paradigm (EP) was divided in two sets of motor
tasks, with 15s fixation blocks at the beginning, in the middle
and at the end of the recording. Each set was composed of 5
conditions, each modeled by a blocks of 12s, preceded by a 3s
cue indicating the task to be performed by the participant. The
former corresponded to moving the tongue, tapping the left or
right finger or squeezing the left or right toes. In what follows,
we only consider one participant even though our results are
reproducible across individuals.

Voxel selection. We aim to qualitatively compare the re-
covery of the neural activation signals for these two tech-
niques (LRD and TA) in each voxel. Each fMRI run comprises
a huge data set consisting of 230,314 voxels (time-courses).
Thus, we only display results for a specific region the right
Precentral Gyrus, corresponding to a subsample of 960 voxels
in which we chose to display two voxels (see Fig. 3) illustrat-
ing the two methodologies.

Results. For this experiment, we chose K = 8 as 8 exper-
imental conditions were involved in the paradigm. As those
approach are unsupervised models with no ground truth, we
set the regularization parameter for LRD and TA by hand such
that λTA = 0.02λmax and λLRD = 0.07λmax. Last, we set the
`1-norm for each map of LRD to be equal to η = 10.0. Fig. 4
illustrates the behavior of the LRD and TA deconvolution
methods in these two voxels. In voxel-1, the low-rank neural
activation signal (shown in blue) appears similar to the TA
one. Both approaches mainly capture the same dynamics in
the measured BOLD signal in this voxel. However, in voxel-
2, some high frequency components (short-duration activity)
that are retrieved in the TA neural activation signal are not
captured by our LRD method. This suggests that our model is
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Fig. 4: In black the BOLD signal, in red the neural activation
signal obtained using TA and in blue the neural activation
signal obtained using our LRD approach.

less sensitive than TA in this voxel. As our temporal atoms are
learned across voxels, this is a direct consequence of reducing
the number of degrees of freedom in the temporal domain in
LRD in contrast to TA. Fig. 5 and Fig. 6 depict respectively the
temporal activities and the spatial maps associated to 2 of the
8 temporal atoms estimated with our LRD approach. Atom #7
is mainly composed of two blocks locked to the offsets of
the condition left hand and its spatial map is sparse, with a
very well localized region of activation. This suggests that our
model has learned the experimental condition that elicits brain
activity in this region. In contrast, atom #8 embodies a slightly
rising slope between two constant periods, which illustrates its
link to the low frequency fluctuations in the fMRI data. The
second map displays smoother and wider activation areas in
the right Precentral Gyrus, suggesting that this model is also
capable of modeling trend effects, not related to the conditions.
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(a) Temporal atom #7
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Fig. 5: The different conditions from the experimental
paradigm are represented in background: blue for left hand,
red for right hand, green for left foot and yellow for right foot.
Each condition lasts 12 s. On the foreground, the estimated
temporal atom.

(a) Spatial map #7

L R

0

0.047

0.095

0.14

0.19

L R

(b) Spatial map #8

L R

0

0.03

0.061

0.091

0.12

L R

Fig. 6: The spatial maps associated with each atom. We have
limited our analysis to the right Precentral Gyrus region
(delimited in black). Values of estimated maps are color coded.

IV. CONCLUSIONS

This paper presents a new low-rank decomposition modeling
of the BOLD signal and a corresponding algorithm to perform
both the deconvolution in time and the mapping in space.
Although such low-rank modeling was already introduced in
the dictionary learning literature [12], we adapted its formu-
lation to fMRI data following ideas from the TA approach.
In the validation on real fMRI data, we showed that our
method provides a similar decomposition than TA. However,
our multivariate model exhibited meaningful components that
compose the BOLD signal along with their corresponding
spatial maps. Nevertheless, the proposed algorithm remains too
computationally demanding as the gradient steps involved all
the voxels and time-frames. To reduce the computational cost
in the future, we will investigate variable splitting approaches
such as randomized block coordinate descents. This contri-

bution opens new research avenues for inspecting functional
connectivity networks that involve mostly the same atoms.

ACKNOWLEDGMENT

This work was supported by a CEA PhD scholarship, the UK
Royal Academy of Engineering under the RF/201718/17128
grant and the SRPe PECRE 1718/15 Award.

REFERENCES
[1] S. Ogawa, D. W. Tank, R. Menon, J. M. Ellerman, S. G. Kim,

H. Merkle, and K. Ugurbil, “Intrinsic signal changes accompanying
sensory stimulation: functional brain mapping with magnetic resonance
imaging,” in Proceedings of the National Academy of Sciences, vol. 89,
1992, pp. 5951–5955.

[2] P. A. Bandettini, A. Jesmanowicz, E. C. Wong, and J. S. Hyde,
“Processing strategies for time-course data sets in functional MRI of
the human brain,” Magnetic Resonance in Medicine, vol. 30, pp. 161–
173, 1993.

[3] G. M. Boynton, S. A. Engel, G. H. Glover, and D. J. Heeger, “Linear
systems anlaysis of functional magnetic resonance imaging in human
V1,” Journal of Neuroscience, vol. 16, no. 13, pp. 4207–4221, 1996.

[4] K. J. Friston, A. P. Holmes, C. J. Price, C. Buchel, and K. J. Worsley,
“Multisubject fMRI studies and conjunction analyses,” NeuroImage,
vol. 10, pp. 385–396, 1999.

[5] R. Viviani, G. Grön, and M. Spitzer, “Functional principal component
analysis of fMRI data.” in Human Brain Mapping, vol. 24, 2005, pp.
109–29.

[6] C. Beckmann and S. Smith, “Probabilistic independent component anal-
ysis for functional magnetic resonance imaging.” in IEEE Transactions
on Medical Imaging, vol. 23, 2004, pp. 137–152.

[7] G. Varoquaux, S. Sadaghiani, P. Pinel, A. Kleinschmidt, J. B. Poline,
and B. Thirion, “A group model for stable multi-subject ICA on fMRI
datasets,” NeuroImage, vol. 51, pp. 288–299, 2010.

[8] F. I. Karahanoglu, C. Caballero-Gaudes, F. Lazeyras, and D. Van
De Ville, “Total activation: fMRI deconvolution through spatio-temporal
regularization,” NeuroImage, vol. 73, pp. 122–134, 2013.

[9] C. Caballero-Gaudes, F. I. Karahanoglu, F. Lazeyras, and D. Van
De Ville, “Structured sparse deconvolution for paradigm free mapping
of functional MRI data,” in International Symposium on Biomedical
Imaging, vol. 9, 2012, pp. 322–325.

[10] H. Cherkaoui, T. Moreau, A. Halimi, and P. Ciuciu, “Sparsity-based
blind deconvolution of neural activation signal in fMRI,” in International
Conference on Acoustics, Speech and Signal Processing, 2019.

[11] B. A. Olshausen and D. J. Field, “Sparse coding with an incomplete
basis set: a strategy employed by V1,” Vision Research, vol. 37, no. 23,
pp. 3311–3325, 1997.

[12] T. Dupre La Tour, T. Moreau, M. Jas, and M. Gramfort, “Multivariate
convolutional sparse coding for electromagnetic brain signals,” Advances
in Neural Information Processing Systems, vol. 31, 2018.

[13] P. Ciuciu, J. B. Poline, G. Marrelec, J. Idier, C. Pallier, and H. Benali,
“Unsupervised robust non-parametric estimation of the hemodynamic
response function for any fMRI experiment,” IEEE Transactions on
Medical Imaging, vol. 22, pp. 1235–1251, 2003.

[14] M. A. Lindquist, J. Meng Loh, L. Atlas, and T. Wager, “Modeling
the hemodynamic response function in fMRI: efficiency, bias and mis-
modeling,” NeuroImage, vol. 45, pp. S187–S198, 2009.

[15] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, pp. 183–202, 2009.

[16] L. Armijo, “Minimization of functions having lipschitz continuous first
partial derivatives,” MathSciNet, 1966.

[17] L. Condat, “Fast projection onto the simplex and the l1 ball,” Mathe-
matical Programming Series A, vol. 158, pp. 575–585, 2016.

[18] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. J. Behrens,
E. Yacoub, and K. Ugurbil, “The WU-minn human connectome project:
An overview,” NeuroImage, vol. 80, pp. 62–79, 2013.

[19] B. T. T. Yeo and et al, “The organization of the human cerebral cortex
estimated by intrinsic functional connectivity,” Journal of Neurophysiol-
ogy, vol. 106, pp. 1125–1165, 2011.

2019 27th European Signal Processing Conference (EUSIPCO)


