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Abstract—In this paper, we proposed an automated method for
segmenting objects of weak boundaries and similar intensities
on volumetric multichannel images. This method relied on a
multiresolution classifier that tackled class overlaps by using the
Riemannian geometry of the RCDs of the multiscale patches of
every multichannel image and reducing the dimensionality of
these RCDs through a novel method that incorporated the intra-
and inter-class neighborhoods of the RCDs in the Riemannian
space and the spatial and hierarchical relationships between
their corresponding patches. The reduced dimensional RCDs
were then used to learn resolution-specific dictionaries for coding
and classifications. To speed up the optimizations and to avoid
convergence to local extrema, the dictionaries and the codes got
initialized by a novel scheme that used the Riemannian geometry
of the RCDs. This method was evaluated on the challenging task
of segmenting cardiac adipose tissues on fat-water MR images.

Index Terms—Riemannian Manifolds, Nonlinear Dimensional-
ity Reduction, Dictionary Learning, Locality Constrained Cod-
ing, Segmenting Multichannel Images

I. INTRODUCTION

Hierarchical classifiers have enabled low complex localiza-
tion and segmentation of objects on multichannel images [1],
[2]. However, they have mostly relied on flat Euclidean geom-
etry of the image descriptors. This limited their performance in
challenging segmentation tasks. Natural data, including region
covariance descriptors (RCDs), lie on (curved) Riemannian
manifolds that obey non-Euclidean geometry [3]. RCDs, com-
puted from real-valued n-dimensional features, are real-valued
n×n symmetric positive definite (SPD) matrices that represent
points in the interior of a convex cone. This Riemannian
manifold is denoted by Sn

++ and lies in an n(n + 1)/2-
dimensional Euclidean space [3].

RCDs by computing average and second-order statistics,
provide a natural way to fuse various types of features. They
also reduce impacts of noise or artifacts, provide scale and
rotation invariance, and can be efficiently computed through
integral images [4]. To benefit from high-dimensional RCDs
in sophisticated clustering/classification tasks, several methods
have been introduced to reduce their dimensionality in favor of
increasing the discriminative power of the clusterer/classifier
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[3], [5]–[7]. Goh et al. extended Euclidean-based nonlin-
ear dimensionality reduction methods to their Riemannian
counterparts to cluster data on separated sub-manifolds of a
Riemannian manifold of known dimension [5]. This hindered
its application to cases where the sub-manifolds, representing
different classes, belong to different Riemannian manifolds
of different dimensionalities and these dimensionalities are
unknown a priori. Additionally, this clustering method re-
lied on the k-nearest neighbors algorithm which required
sub-manifolds to be k-disconnected from each other and k-
connected internally. This also hindered its application to many
real life scenarios where different classes (sub-manifolds) have
overlaps in the Riemannian feature space. It also allowed
classification only in a transductive way, as no parametric map
to the lower-dimensional space was provided. Harandi et al.
improved the discriminative power of the clusterer/classifier by
reducing the dimensionality of the Riemannian manifold of the
RCDs with regard to their inter- and intra-class neighborhoods
[3]. However, it neglected the proximity of the correspond-
ing patches in the spatial domain which was an important
factor for image segmentation. Moreover, it determined the
lower dimensionality and the size of the inter- and intra-
class neighborhoods via cross-validations. These increased
its computations and made the optimized hyperparameters
specific to the application and data quality.

In this paper, we proposed an automated method for seg-
menting objects of weak boundaries and similar intensities
on volumetric multichannel images. This method relied on
a classifier that tackled class overlaps by using a novel
scheme based on the Riemannian geometry of the RCDs
of the multiscale patches to reduce their dimensionality and
to learn their resolution-specific dictionaries for coding and
classifications. This method was evaluated on the challenging
task of segmenting cardiac adipose tissues on fat-water MR
images. In the following, a fat-water image/patch refers to a
volumetric fat-water image/patch.

II. MATERIALS AND METHODS

A. Framework of Automatic Segmentation

The proposed method used a hierarchical decision tree
classifier that encoded a multiresolution image pyramid to
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process samples from coarse to fine. Samples of the coarsest
resolution were fed to the root node of the tree to be processed
while being decomposed into finer resolutions. The finest
samples reached the leaf nodes. Every decision node of this
classifier: 1) reduced the dimensionality of the RCDs of its
received samples by the dimensionality reduction maps learnt
in the previous (coarser) and the current layer. 2) encoded the
reduced dimensional RCDs by a dictionary learnt based on a
kernelized locality constrained coding (kLCC) [8]. 3) classified
every sample based on the code of its RCD. 4) decomposed
samples into a finer resolution and assigned them to the nodes
of the next (finer) layer according to their estimated labels.

B. The Multiscale RCDs

The fat-water images were divided into a training and a
test set and were processed by a multiresolution pyramid to
form multiresolution training and test samples. The training
samples involved multiscale fat-water patches of the training
images, their RCDs and their reference labels. These samples
were used to optimize the parameters of the classifier. The
test samples involved multiscale fat-water patches of the test
images and their RCDs. They were used to evaluate the
classifier performance. The pyramid was built from coarse to
fine and involved L resolution layers with l = L and l = 1
denoting the coarsest and the finest layer, respectively. In the
lth layer, cubic patches of (2l+1)3 voxels were extracted from
every fat or water image. These patches covered the entire
image without having overlaps with each other. Then, from
the 26-connected neighborhood of every nonborder voxel of
each fat/water patch, 45 features were extracted. These features
included median of intensities, average gradient magnitude,
histogram of oriented gradients quantized by 20 vectors of
a regular icosahedron, and 14 × 3 = 42 isotropic (angle-
invariant) features of angular mean, range, and standard devia-
tion of 14 Haralick features of a 3D gray-level co-occurrence
matrix of 1 voxel displacement in 13 directions [9]. Thus,
from every fat-water (2-channel) patch, 45× 2 = 90 intra-
channel features were extracted. Also, 6 inter-channel features,
including fat fraction ratio, fat-water ratio, absolute differences
in the median of intensities and average gradient magnitudes,
and l1 norm of differences in histogram of oriented gradients
and isotropic Haralick features, were extracted from it. These
gave an 96-dimensional feature vector for every fat-water
patch at every resolution layer. Using these features, the
integral image of the patch was computed and yielded its n×n
RCD with n= 96 [4]. For the jth fat-water patch at the lth layer,
this RCD was denoted by Cl, j ∈ Sn

++ ⊂ Rn×n.

C. Spatial and Hierarchical Dimensionality Reduction

In every layer l of the classifier, prior to the classifications,
the dimensionality of the n×n RCDs of the received samples
were reduced by the dimensionality reduction maps learnt in
the previous (coarser) layers and the current layer. The reduced
dimensional RCDs were then used to classify the samples.
Then these samples were decomposed into a finer resolution
to be processed by the next (finer) layer of the classifier.

The dimensionality reduction in every layer l was done by
a map fWl : Snl

++ → Sml
++ with fWl (Xl, j) = WT

l Xl, jWl , ml =
nl
rl

, nl =
n

rL×rL−1×···×rl+1
, and Wl ∈ G(ml ,nl) ⊂ Rnl×ml where

G(ml ,nl) denoted the Grassmannian manifold.
Because this map was to be used by the next (finer) layers

as well, during the training, RCDs of the training samples
of the current layer, {Cl, j ∈ Sn

++}
Nl
j=1, and the RCDs of

the samples resulted from their hierarchical decomposition,
{Cl−1,k ∈ Sn

++}
Nl−1
k=1 , were considered.

To this end, first the dimensionality of {Cl, j ∈ Sn
++}

Nl
j=1 and

{Cl−1,k ∈ Sn
++}

Nl−1
k=1 were reduced by the dimensionality reduc-

tion maps learnt in the previous (coarser) layers. These formed
{Xl, j ∈ Snl

++ ⊂ Rnl×nl}Nl
j=1 and {Xl−1,k ∈ Snl

++ ⊂ Rnl×nl}Nl−1
k=1

with Xl, j = WT
l+1 · · ·WT

L−1WT
L Cl, jWLWL−1 · · ·Wl+1 and

Xl−1,k = WT
l+1 · · ·WT

L−1WT
L Cl−1,kWLWL−1 · · ·Wl+1. Thus,

Cl, j ∈ Sn
++ and Xl, j ∈ Snl

++ were from the same sample at the
lth layer. Cl−1,k ∈ Sn

++ and Xl−1,k ∈ Snl
++ were from a child

of this sample at the (l−1)th layer.
The map fWl : Snl

++→ Sml
++ aimed at reducing the complex-

ity of dictionary learning for classification while increasing
the discriminative power of the classifier by minimizing the
intra-class distances and maximizing the inter-class distances
between RCDs of the samples. Additionally, and in particular
for image segmentation, we aimed to maintain sharp edges
between different objects and a smooth segmentation within
one object region. To achieve these, we proposed to weigh the
above (Riemannian) distances by a spatial affinity function that
measured neighborhood related label-correspondence between
RCDs of the same layer. Also, to make the dimensionality
reduction maps, learnt by each layer, applicable to the next
(finer) layer, we introduced a hierarchical affinity function that
measured hierarchically related label-correspondence between
RCDs of samples at adjacent layers.

The spatial as : Snl
++× Snl

++ → R and the hierarchical ah :
Snl
++×Snl

++→ R affinity functions were defined as

as(Xl, j,Xl,k) =


+2, if cl, j = cl,k and Xl, j↔ Xl,k

+1, if cl, j = cl,k and Xl, j = Xl,k

−1, if cl, j 6= cl,k and Xl, j = Xl,k

−2, if cl, j 6= cl,k and Xl, j↔ Xl,k

, (1)

ah(Xl, j,Xl−1,k) =


+2, if cl, j = cl−1,k and Xl, j l Xl−1,k

+1, if cl, j = cl−1,k and Xl, j � Xl−1,k

−1, if cl, j 6= cl−1,k and Xl, j � Xl−1,k

−2, if cl, j 6= cl−1,k and Xl, j l Xl−1,k

, (2)

where Xl, j,Xl,k,Xl−1,k ∈ Snl
++ were the reduced dimensional

RCDs; cl, j,cl,k and cl−1,k were the reference labels of the
training samples of Xl, j,Xl,k and Xl−1,k, respectively;↔ (=)
denoted patches of the RCDs being (not being) 26-connected
neighborhood of each other; l (�) denoted patches of the
RCDs having (not having) a hierarchical (parent-child) rela-
tionship with each other. Patch of Xl, j ∈ Snl

++ was the parent
of the patch of Xl−1,k ∈ Snl

++ if patch of Xl−1,k ∈ Snl
++ was part

of the patch of Xl, j ∈ Snl
++.
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Fig. 1. Profile of the averaged reconstruction errors of dictionary learning
and coding over iterations of every layer of the hierarchical classifier.

Then the optimum parameters Wl ∈ G(ml ,nl)⊂ Rnl×ml for
the map fWl : Snl

++→ Sml
++ at the lth layer were determined as

Wl = arg min
Ŵl

(
Nl

∑
j,k=1
j 6=k

as(Xl, j,Xl,k) · τ2(ŴT
l Xl, jŴl ,ŴT

l Xl,kŴl)

+
Nl

∑
j=1

Nl−1

∑
k=1

ah(Xl, j,Xl−1,k) · τ2(ŴT
l Xl, jŴl ,ŴT

l Xl−1,kŴl)

)
,

s.t. WT
l Wl = Iml ,

(3)

where τ2(·) was the Riemannian distance between RCDs and
Iml was the ml ×ml identity matrix. The unitary constraint
ensured that ∀ j,k,WT

l Xl, jWl and WT
l Xl−1,kWl were valid

SPD matrices, i.e. Wl ∈ Rnl×ml was of full (ml) rank [3].
The minimization in (3) was done by an iterative Rieman-

nian conjugate gradient method on the Grassmannian manifold
G(ml ,nl)3Wl [3]. To speed up this minimization, in the initial
iterations τ2(·)= τ2

le(·), where τ2
le(X,Y)= ‖log(X)− log(Y)‖2

F
was the log-Euclidean metric based on the Frobenius norm
‖·‖2

F and the principal matrix logarithm log(·). In the final
iterations, τ2(·) = τ2

S (·), with τ2
S (X,Y) = log|X+Y

2 |−
1
2 log|XY|

being the Stein divergence [3]. This way, the reduced dimen-
sional RCDs of the training samples at the lth layer were
{WT

l Xl, jWl = Yl, j ∈ Sml
++}

Nl
j=1. These were used in the fol-

lowing steps to learn dictionaries for classifying test samples.

D. Riemannian Dictionary Learning

The proposed hierarchical classifier relied on a Riemannian
kernelized locality constrained coding (kLCC) to classify the
test samples [8]. To this end, during the training, in every
layer l, a dictionary Dl = {Dl,i ∈ Sml

++}
Al
i=1 was learnt from

the reduced dimensional RCDs Yl = {Yl, j ∈ Sml
++}

Nl
j=1 of the

training samples. During the test, the reduced dimensional
RCD of every test sample was encoded by the learnt dictionary
and was then classified based on the resulting code.

In an approximated kLCC, the prior on the codes was
eliminated by representing each RCD with a number of nearest
dictionary atoms [8]. In this case, the closed-form solution of
the code was unique if this number was less than or equal
to the dimension of the RCD. Based on this and without
loss of generality, we assumed that in every layer l of the
classifier, the ml ×ml RCDs of the training samples of a

specific class 1 ≤ c ≤ C could be represented by ml class-
specific dictionary atoms. In this regard, the RCDs Yl =
{Yl, j ∈ Sml

++}
Nl
j=1 of the training samples and the dictionary

atoms Dl = {Dl,i ∈ Sml
++}

Al
i=1 were partitioned according to their

class labels. These formed Yl =
⋃C

c=1Yl,c and Dl =
⋃C

c=1Dl,c

with Yl,c = {Yl,c, j ∈ Sml
++}

Nl,c
j=1, Dl,c = {Dl,c,i ∈ Sml

++}
Al,c=ml
i=1 ,

Nl = ∑
C
c=1 Nl,c, and Al = Al,c ·C. Having Al,c = ml , not only

guaranteed uniqueness of the resulting codes but also implied
that by moving towards finer layers and reducing ml the
dictionary atoms become more discriminative.

In the Riemannian kLCC [6], the nonlinear geometries of
Sml
++ was avoided by embedding it into a linear Hilbert space

Hl through a map φl : Sml
++ → Hl that used a reproducing

positive definite kernel kl(X,Y) = exp(−βl · τ2
S (X,Y)) based

on the Stein divergence τ2
S (·). The kernel kl : Sml

++×Sml
++→R

fulfilled: kl(X,Y) = (φl(X))T ·φl(Y). Accordingly,

∀ j,φl(Yl, j)≈
Al

∑
i=1

αl, j,i ·φl(Dl,i), s.t.
Al

∑
i=1

αl, j,i = 1, (4)

where αl, j = (αl, j,1, · · · ,αl, j,Al )
T was the coding vector of

φl(Yl, j) with respect to φl(Dl) = {φl(Dl,i)}Al
i=1. In [6], [7],

the dictionaries and the codes were optimized iteratively and
alternately. That is, in every trial, one unknown (dictionary
or code) was fixed and the other unknown was optimized.
However, these methods provided no way for the initialization
other than using randomized dictionaries and codes. Regarding
the nonconvexity of the cost functions involved in such a dic-
tionary learning and coding [6], [7], this random initialization
could lead to a convergence to local extrema and an increased
processing time. Additionally, in case of using the embedding
φl : Sml

++ → Hl , the parameter βl could significantly impact
the resulting dictionary and thus needed to be optimized as
well. This hindered the initialization of the dictionaries in
the Hilbert space by a linear combination of {φl(Yl, j)}Nl

j=1
as βl was unknown initially. Thus, to apply [6] in the training
(optimization), we proposed a systematic way to initialize the
dictionary and the codes in every layer of the classifier.

E. Layer-specific Initialization of Dictionary and Codes

In our approach, for every layer l, the dictionary
Dl = {Dl,i ∈ Sml

++}
Al
i=1 =

⋃C
c=1Dl,c with Dl,c = {Dl,c,i ∈

Sml
++}

Al,c=ml
i=1 was initialized by exploiting the Rieman-

nian geometry of Yl = {Yl, j ∈ Sml
++}

Nl
j=1 =

⋃C
c=1Yl,c with

Yl,c = {Yl,c, j ∈ Sml
++}

Nl,c
j=1. First the Karcher mean Yl,c =

arg minY∈S
ml
++

∑
Nl,c
j=1‖logY(Yl,c, j)‖2

Y of every Yl,c, 1 ≤ c ≤ C,
was computed iteratively [5]. Here, logY : Sml

++→ TYSml
++ was a

map from the Riemannian manifold Sml
++ to its ml-dimensional

tangent space at Y ∈ Sml
++ denoted by TYSml

++; ‖logY(Yl,c, j)‖2
Y

was the norm of the vector logY(Yl,c, j) in TYSml
++.

Then a principal geodesic analysis was conducted by
mapping Yl,c into TYl,c

Sml
++ and finding all ml principal

directions (eigen vectors) of the covariance matrix ΣYl,c
=

1
Nl,c

∑
Nl,c
j=1 [(logYl,c

(Yl,c, j)) · (logYl,c
(Yl,c, j))

T ]. These vectors,

denoted by {yl,c,i}
Al,c=ml
i=1 , formed an orthonormal basis for
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Fig. 2. The automatically segmented masks (red), the reference masks (green), and their overlaps (yellow) for PvAT (a), EpAT (b), and PeAT (c) shown on
axial slices of a test fat image.

TYl,c
Sml
++. Accordingly, vector-counterparts of the initial dic-

tionary atoms for representing samples of the cth class were
defined as: {d(0)

l,c,i = σl,c,i · yl,c,i}
Al,c=ml
i=1 where σl,c,i was the

standard deviation of the samples along yl,c,i or σl,c,i =
√

λl,c,i
with λl,c,i being the eigenvalue of yl,c,i. Finally, by using the
map log−1

Yl,c
= expYl,c

: TYl,c
Sml
++ → Sml

++, these vectors were

converted to points (matrices) on Sml
++ to form the initial

dictionary atoms for representing samples of the cth class.
That is, the initial dictionary D(0)

l = {D(0)
l,i }

Al
i=1 =

⋃C
c=1D

(0)
l,c was

made from D(0)
l,c = {D(0)

l,c,i = expYl,c
(d(0)

l,c,i)}
Al,c=ml
i=1 .

Then for every Yl, j ∈ Yl,c, that had the class label c, the
initial codes were defined as

α
(0)
l, j,i =

{
1/ml , if D(0)

l,i ∈ D(0)
l,c

0, otherwise
, 1≤ i≤ Al . (5)

These formed α
(0)
l, j = (α

(0)
l, j,1, · · · ,α

(0)
l, j,Al

)T with ∑
Al
i=1 α

(0)
l, j,i = 1.

Having the dictionaries and the codes initialized, the iter-
ative and alternating approach of [6] was followed to opti-
mize the dictionary D(J)

l = {D(J)
l,i ∈ Sml

++}
Al
i=1 =

⋃C
c=1D

(J)
l,c with

D(J)
l,c = {D(J)

l,c,i ∈ Sml
++}

Al,c=ml
i=1 , the codes {α(J)

l, j ∈ RAl}Nl
j=1, and

the β
(J)
l ∈R over J iterations. The β

(J)
l defined φ

(J)
l : Sml

++→Hl

and k(J)l (X,Y) = (φ
(J)
l (X))T ·φ (J)

l (Y).

III. EVALUATION

A. Image Data Sets and Reference Labeling

Thirty nine fat-water MR images were acquired on a clinical
3 T MR scanner and were then divided into 21 images for
training and 18 images for testing. On every fat-water image,
reference masks of pericardial (PeAT), epicardial (EpAT), and
cardiac perivascular adipose tissues (PvAT) were manually
segmented by an experienced radiologist using the interactive
tools of Medical Imaging Interaction Toolkit (MITK) [10].
These masks determined the voxel-wise and the patch-wise
reference labels for C = 4 classes including background.

B. Segmentation of the Test Images

To automatically segment cardiac adipose tissues on a test
fat-water image, an image pyramid of L = 4 layers was built.

The resulting test samples were processed from coarse to fine.
In every layer 1≤ l≤ 4 of the classifier, first the dimensionality
of the RCD of every test sample j was reduced by a factor of
2 and then it was mapped into a linear Hilbert space yielding
φ
(J)
l (Yl, j). This was then encoded by the mapped dictionary

φ
(J)
l (Dl) = {φ

(J)
l (Dl,i)}Al

i=1 to get the classification code α
(J)
l, j =

(α
(J)
l, j,1, · · · ,α

(J)
l, j,Al

)T of the test sample.
The dictionary atoms were class-specific, i.e. every atom

Dl,i ∈Dl had a class label bl,i = c if Dl,i ∈Dl,c ⊂Dl . Accord-
ingly, for every φ

(J)
l (Yl, j), a class-specific code αl,c, j =(α

(J)
l, j,1 ·

δ (bl,1−c), · · · ,α(J)
l, j,Al
·δ (bl,Al−c))T could be obtained [6], [7].

This code determined error of reconstructing φ
(J)
l (Yl, j) with

φ
(J)
l (Dl) for the cth class as

εl,c(Yl, j) =
∥∥∥φ

(J)
l (Yl, j)−

Al

∑
i=1

α
(J)
l, j,i ·δ (bl,i− c) ·φ (J)

l (Dl,i)
∥∥∥2

=−2αT
l,c, j ·K(Yl, j,Dl)+αT

l,c, j ·K(Dl ,Dl) ·αT
l,c, j

, (6)

where K(Yl, j,Dl) = [k(J)l (Yl, j,Dl,i)]i=1,···,Al and K(Dl ,Dl) =

[k(J)l (Dl, j,Dl,i)]i, j=1,···,Al . Accordingly, the class label of every
Yl, j was estimated as ĉl, j = arg min

1≤c≤C
εl,c(Yl, j). By assigning

these labels to the corresponding fat-water patches, masks of
the automatically segmented adipose tissues were obtained.

C. Quantitative Metrics

The automatically segmented masks of the cardiac adipose
tissues were compared against the reference masks using the
quantitative metrics of dice coefficient (Dice), mean symmetric
surface distance (MSSD), and Hausdorff distance (HSD) [11].

IV. RESULTS

A. Convergence and Processing Times

The kLCC-based dictionary was iteratively learnt once with
the proposed initialization and once with a random initializa-
tion. To measure the convergence of these dictionaries in every
layer l of the classifier, in each iteration, the updated dictio-
naries and βl were used to reconstruct the training samples in
that layer using (6). The resulting class-specific reconstruction
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errors were averaged yielding: ε l =
1
C ∑

C
c=1 ∑∀ j εl,c(Yl, j). Fig.

1 shows the profile of these errors over iterations.
In each layer of the proposed classifier, the computational

complexity of the Riemannian dimensionality reduction and
dictionary learning were like the previous methods [3], [5]–[7].
The computational complexity of the proposed initialization
was in the order of a principal geodesic analysis [12].

On a PC with 32 GB RAM and a quad-core CPU of
3.10 GHz frequency, the multiscale RCDs of 21 training
fat-water images got computed in 2.4 hours and the layer-
specific dictionaries with the proposed/random initialization
were learned in 2.2/2.7 hours. On the same PC, segmentation
of a test fat-water image took 18±5.4 minutes.

B. Objective and Subjective Results

On 18 test fat-water images, the proposed method achieved
Dice = 87.9±2.1, MSSD = 1.2±0.22, and HSD = 4.12±1.08 in
the automatically segmented EpAT. Dice = 89.7±1.1, MSSD
= 0.8±0.11, and HSD = 3.86±0.92 in the automatically
segmented PeAT. Dice = 82.5±1.9, MSSD = 1.23±0.42, and
HSD = 4.88±1.12 in the automatically segmented PvAT.

Fig. 2 shows the automatically segmented and the reference
masks of these adipose tissues on a test fat image.

V. DISCUSSION AND CONCLUSION

The present method expanded on [3], by incorporating
the spatial (neighborhood) and the hierarchical (parent-child)
relationships between patches into their intra- and inter-
class Riemannian distances. This, not only enhanced the
Riemannian dimensionality reduction for the segmentations,
but also eliminated the need to considering intra- and inter-
class neighborhood sizes as hyperparameters. This improved
the generalizability of the proposed method to any segmen-
tation/classification task. Also, over the hierarchies of the
proposed classifier, dimensions of the Riemannian manifolds
of the RCDs were reduced in proportion to the reduced number
of available samples. This could enhance the discriminative
power of any hierarchical classifier [1].

The present method introduced a novel way to initialize
the dictionaries and the codes of a kLCC [6], [8]. This
was done by exploiting the Riemannian geometry of the
reduced dimensional RCDs of the training samples. Despite
of involving additional computations, this initialization led to
a faster convergence than a random initialization. It could
also enhance any kernelized dictionary learning by allowing
a systematic initialization and optimization of the kernel size.
Moreover, we used dictionary learning not only to represent
training samples in a compact way, but also to generate
discriminative codes for the classification of the test samples.
To this end, the kLCC [6], [8] was preferred to a sparse coding
since it provided closed-form unique solutions to the codes
and showed a higher classification performance [6]. Also, this
coding avoided degenerations caused by the sensitivity of the
Lasso regularization to numerical inconsistencies and did not
need to normalize the second norm of its updated dictionary
at the end of each iteration. In the approximated kLCC [8],

the number of nearest dictionary atoms was a hyperparameter.
To avoid its optimization, we set it to the maximum value that
guaranteed uniqueness of the codes’ solution [6]. Moreover,
in contrast to [5], our method made no assumption about the
number or dimensionality of the involved manifolds. It also
did not demand a certain intra-class connectivity or a certain
inter-class disconnectivity between samples as the classifier
boundaries were derived supervisedly.

In a previous approach [13], Riemannian dimensionality
reduction and dictionary learning were jointly done by con-
sidering their interactions. In contrast, we performed those
steps independently. Use of the aforementioned interactions
could reduce the computational costs of the present method
and would be a subject of a future work. The present method
was evaluated on the challenging task of segmenting cardiac
adipose tissues on fat-water MR images. To the best of our
knowledge, no previous method has addressed this automatic
segmentation. Thus a comparison with the state-of-the-art was
not possible. Future work will be a comparative evaluation
of the present method on other segmentation/classification
tasks. Finally, the proposed hierarchical method could extract
features at different resolutions and abstraction levels. This
reduced the need to Gabor, local binary pattern, and other
morphological descriptors. However, the impact of these ad-
ditional features can be evaluated in an extended work.
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