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Abstract—We consider the estimation of the direction of

arrivals (DOAs) of plane waves hidden in additive, mutually

independent, complex circularly symmetric noise at very low

signal to noise ratio (SNR). The maximum-likelihood estimator

(ML) for the DOAs of deterministic signals carried by plane

waves hidden in noise with a Laplace-like distribution is derived.

This leads to a DOA estimator based on the Least Absolute

Deviation (LAD) criterion. We prove analytically that a weighted

phase-only beamformer (which evaluates the scalar product

between the steering vector and the complex signum function of

the observed array data) is an approximation to a beamformer

based on the Least Absolute Deviation (LAD) criterion. The root

mean squared error of DOA estimators versus SNR is compared

in a simulation study: the conventional beamformer (CBF), the

weighted phase-only beamformer, and sparse Bayesian learning

(SBL3). This shows show that the ML estimator and weighted

phase-only beamformer are well performing DOA estimators at

low SNR for additive homoscedastic and heteroscedastic Gaussian

noise, as well as Laplace-like noise.

I. INTRODUCTION

Laplace distributions for signal and noise models have been
used for studying detection and estimation problems since a
long time. They are often used as a model for impulsive noise
which is prevalent in seismic, acoustic, and radio environments
[1], [2], [3]. Multivariate Laplace probability models and their
generalizations are discussed in Refs. [4], [5]. Alternatively,
a heteroscedastic noise model is used in [6] which is a
hierarchical probability model based on a conditional normal
distribution given the noise variance parameter �2 and assum-
ing a probability distribution for �2.

Previously, a Laplace-like probability density has been
assumed for the complex source amplitudes of plane waves
hidden in additive white Gaussian noise in [7], [8]. In this
context, the Laplace-like probability density has been used to
promote sparse solutions [9], [10]. Such Laplace-like proba-
bility density is similar to the multivariate Laplace probability
density, but the two should not be confused.

Here, we assume a Laplace-like probability density for
the additive noise and regard the unknown complex source
amplitudes as deterministic unknown variables. Based on the
maximum-likelihood principle, this leads to complex-valued
least absolute deviation (LAD) regression. Further, we show
analytically that a weighted phase-only beamformer which
computes the scalar product between the steering vector for a
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given DOA and the complex signum function of the observed
array data approximates the LAD regression at low SNR.

It is well known that LAD regression has desirable ro-
bustness properties [11]. For example, influence function for
LAD regression is universally bounded which guarantees that
outliers in the observation data can only have a limited
influence on the estimated regression result.

Robust estimation and detection of signals hidden in addi-
tive non-Gaussian noise has been considered in e.g. [12], [13],
[14]. Huber’s saddlepoint method is used in [12], which allows
the specification of the robust detector for nominally Laplace
distributed noise and the analysis of its performance.

II. SINGLE SOURCE IN LAPLACE-LIKE NOISE

The array data model for multiple measurement vectors
y

`
for a single plane wave arriving from direction of arrival

(DOA) ✓ in additive independent identically distributed zero-
mean complex-valued Laplace-like noise is

y
`
= a(✓)x` + n`, (` = 1, . . . , L) (1)

where a(✓) = [a1(✓), . . . , aN (✓)]T is the plane wave steering
vector for a single wave with unknown complex source am-
plitude x`. The nth element is given by an(✓) = ej !dn

c sin ✓

(dn is the distance to the reference element and c the phase
speed). The complex random vector n` has the Laplace-like
probability density function (pdf)

p(n`) =
NY

k=1

✓
�p
2⇡

◆2

e��|nk`| =
�2N

(2⇡)N
e��kn`k1 . (2)

We assume the noise to be independent across all measurement
vectors, ` = 1, . . . , L. Given the DOA ✓ and the (row-
)vector of complex source amplitudes x = [x1, . . . , xL], the
probability density of the array data matrix Y = [y1, . . . ,yL

]
with typical element yn` is

p(Y ; ✓, x) =
LY

`=1

NY

n=1

✓
�p
2⇡

◆2

e��|yn`�an(✓)x`| (3)

=
LY

`=1

�2N

(2⇡)N
e��ky`�a(✓) x`k1 . (4)
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The negative log-likelihood for the unknown parameters
✓, x,� becomes

L(✓,x,�) = � ln p(y; ✓, x)

= �
LX

`=1

NX

n=1

✓
|yn` � an(✓)x`|�N ln

�2

2⇡

◆
(5)

= �
LX

`=1

ky
`
� a(✓)x`k1 � LN ln

�2

2⇡
. (6)

Estimators based on minimizing the criterion (5) are known
as Least Absolute Deviation (LAD) estimators [11]. The LAD
estimator is the ML-estimator for DOA ✓ in Laplace-like noise.

✓̂LAD = arg min
x2CL,�>0,✓2⇥

L(✓,x,�), (7)

where ⇥ is the feasible set of DOAs.
The numerical solution to (7) is found as follows. The

complex conjugate derivative (in the sense of the Wirtinger
calculus [11, Sec. 2.1]) of L with respect to the complex source
amplitude is the direction of largest change [11, Eq.(2.3)]

@L
@x⇤

`

= �
NX

n=1

@|yn � an(✓)x`|
@x⇤

`

= ��

2

NX

n=1

a⇤
n
(✓)

yn � an(✓)x`

|yn � an(✓)x`|

= ��

2
aH(✓) W `(✓, x`) (y � a(✓)x`) (8)

where we introduced the diagonal weighting matrix

W `(✓, x`) = diag
✓

1
|y1`�a1(✓)x`|

, . . . ,
1

|yN`�aN (✓)x`|

◆

(9)

Equating (8) to zero shows that a stationary point in L satisfies

x` = x̂`,LAD(✓) =
aH(✓) W `(✓, x`) y

`

aH(✓) W `(✓, x`)a(✓)
, (10)

for ` = 1, . . . , L. This expression does not allow direct evalu-
ation because the weighting matrix depends on the unknowns.
In the following, we assume low signal to noise ratio (SNR),

|x`|⌧ min
n

(|a⇤
n
yn`|) = min

n

(|yn`|) (11)

and expand W `(✓,dx) for infinitesimal change dx from x` =
0 and any ✓ as

W `(✓, dx) = W 0` +
@W`

@x`

�����
x`=0

dx +
@W`

@x⇤
`

�����
x
⇤
`
=0

dx⇤

= W 0`+
1
2
yH

`
W 3

0`
a(✓) dx +

1
2
yT

`
W 3

0`
a(✓)⇤ dx⇤

= W 0`+Re[yH

`
W 3

0`
a(✓) dx] (12)

where the complex derivatives with respect to x` and x⇤
`

are
again in the sense of the Wirtinger calculus and

W 0` = W `(✓, 0) = diag
✓

1
|y1`|

, . . . ,
1

|yN`|

◆
(13)

A first approximation x̂(1)
`

to the ML estimate (10) is found
using the first term in (12)

x̂(1)
`

=
aH(✓) W 0` y

`

aH(✓)W 0` a(✓)
= c` aH(✓) W 0` y

`
= c`a

H(✓) ỹ
`

(14)

c` =
1

aH(✓)W 0` a(✓)
=

 
NX

n=1

1
|yn`|

!�1

(15)

ỹ
`
= W 0` y

`
= sign(y

`
) =

✓
y1`

|y1`|
, . . . ,

yN`

|yN`|

◆T

, (16)

where sign(·) is the complex signum function [11, Eq.(2.6)].
Note that aH ỹ

`
in (14) resembles a CBF, with the steering

vector a(✓) applied to complex signum function ỹ
`
, cf. [6].

Thus aH(✓)ỹ
`

becomes independent of the magnitude of the
array data which indicates robustness against outliers in the
array data. The scaling c` (15) is positive real and independent
of DOA ✓. The scaling does, however, depend on the array data
magnitudes.

We refer to the averaged squared magnitude of (14) as
the weighted phase-only beamformer. The averaging of the
estimated source power is carried out across measurement
vectors,

B̃L(✓) =
1
L

LX

`=1

|x̂(1)
`

|2 =
1
L

LX

`=1

��c`a
H(✓)ỹ

`

��2 (17)

= aH(✓)

 
1
L

LX

`=1

c2
`
ỹ

`
ỹH

`

!
a(✓) (18)

We use the first approximation (14) to initialize an it-
eratively re-weighted least squares (IRWLS) algorithm for
i = 1, 2, . . . until convergence [11, Algorithm 3],

x̂(i+1)
`

=
aH(✓)W `(✓, x̂

(i)
`

) y
`

aH(✓) W `(✓, x̂
(i)
`

) a(✓)
�!
i!1

x̂`,LAD(✓) .

(19)
Substituting x = x̂LAD(✓) in (6) gives

L(✓, x̂LAD(✓),�) = �
LX

`=1

ky
`
�a(✓)x̂`,LAD(✓)k1�LN ln

�2

2⇡
.

(20)

Here x̂`,LAD(✓) is the `th element of x̂LAD(✓), the LAD
estimate for the complex source amplitude for DOA ✓ obtained
by IRWLS. Minimizing (20) with respect to � gives

�̂LAD(✓) =
2LN

LP
`=1
ky

`
� a(✓)x̂`,LAD(✓)k1

(21)

Substituting � = �̂LAD(✓) into (20) gives the concentrated
likelihood function for DOA ✓:

L(✓,x̂LAD(✓), �̂LAD(✓)) =

2LN ln
LX

`=1

ky
`
� a(✓)x̂`,LAD(✓)k1 + const. (22)
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The numerical solution to (7) is found by a global grid search
over (22) for ✓ 2 ⇥.

III. MULTIPLE SOURCES IN LAPLACE-LIKE NOISE

The array data model for multiple measurement vectors
(MMV) y

l
with multiple sources in additive independent

identically distributed (i.i.d.) Laplace-like noise is

Y = A(✓)X + N , (23)

where Y = [y1, . . . ,yL
] 2 CN⇥L, X = [x1, . . . ,xL] 2

CK⇥L, and similarly for N . We assume that K plane
waves are arriving in additive white Laplace-like noise
and the antenna array has N elements. Here, A(✓) =
(a(✓1), . . . ,a(✓K) 2 CN⇥K is the steering matrix which
contains the steering vectors a(✓k) as columns. The DOAs of
the plane waves are collected in the vector ✓ = (✓1, . . . , ✓K)T .
The negative log-likelihood is

L(✓,X,�) = �
LX

`=1

ky
`
�A(✓)x`k1 � LN ln

�2

2⇡
.

= � kY �A(✓)Xk1 � LN ln
�2

2⇡
, (24)

where we have introduced the entry-wise l1-norm for matrices,
i.e., kY k1 =

P
N

n=1

P
L

`=1 |yn`|. The LAD estimator (7) is
formally defined by

✓̂LAD = arg min
X2CK⇥L, �>0, ✓2⇥

L(✓,X,�). (25)

The feasible set ⇥ is discrete and contains all combinations
of DOAs. The numerical solution to (25) is found as follows.
First, we assume that the DOA vector ✓ is given and A(✓) is
fixed and known. The complex conjugate derivative (in the
sense of the Wirtinger calculus) of L with respect to the
complex source amplitude vector is the direction of largest
change [11, Eq.(2.3)]

@L
@x⇤

`

= ��

2
AH(✓) W `(✓, x`) (y

`
�A(✓)x`) (26)

where we introduced the diagonal weighting matrix

W `(✓,x`) = diag
✓

1
|eT

1 (y
`
�A(✓)x`)|

, . . . ,

1
|eT

N
(y

`
�A(✓)x`)|

◆
. (27)

Here en is the nth standard basis vector. Equating (26) to zero
shows that a stationary point in L satisfies

AH(✓)W `(✓,x`)A(✓)x` = AH(✓)W `(✓,x`) y
`
. (28)

This expression does not allow direct evaluation since the
weighting matrix depends on the unknowns. We now assume
a low SNR and a first approximation x̂(1)

`
to the ML estimate

(28) is found using the first term in (12)

x̂(1)
`

=
⇣
AH(✓)W 0`A(✓)

⌘�1
AH(✓)W 0` y

`

=
⇣
AH(✓)W 0`A(✓)

⌘�1
AH(✓) ỹ

`
(29)

Then the LAD estimate X̂LAD(✓) is computed column-by-
column (` = 1, . . . , L) by applying the IRWLS algorithm to
each data measurement vector individually for i = 1, 2, . . .
until convergence [11, Algorithm 3], cf. (19),

x̂(i+1)
`

=
h
AH(✓)W `(✓, x̂(i)

`
)A(✓)

i�1
AH(✓) W `(✓, x̂(i)

`
) y

`

�!
i!1

x̂`,LAD(✓) , (30)

X̂LAD(✓) = (x̂1,LAD(✓), . . . , x̂L,LAD(✓)). (31)

After substituting X = X̂LAD(✓) in (24), we get

L(✓, X̂LAD(✓),�) = �
���Y �A(✓)X̂LAD(✓)

���
1
� LN ln

�2

2⇡
.

(32)

Minimizing (32) with respect to � gives the ML estimate

�̂LAD(✓) = 2LN
.���Y �A(✓)X̂LAD(✓)

���
1

(33)

Substituting � = �̂LAD(✓) into (32) gives the concentrated
likelihood function for the DOA vector ✓,

L(✓,X̂LAD(✓), �̂LAD(✓))

= 2LN ln
���Y �A(✓)X̂LAD(✓)

���
1

+ const. (34)

The numerical solution to (25) is found by a global grid search
over (34) for all combinations of DOAs, ✓ 2 ⇥.

IV. SIMULATIONS

Performance is assessed by numerical simulations using
synthetic data. For the results in Figs. 1 and 2, a single plane
wave with DOA �45� with additive noise is observed with a
uniform linear antenna array with N = 20 elements and spac-
ing �/2. The feasible set ⇥ in (7) is {0�, 1�, . . . , 180�}. Three
different types of zero-mean circularly symmetric complex-
valued noise N in (23) are simulated.

The first type is i.i.d. Laplace-like noise with probability
density (2). The second type is i.i.d. Gaussian noise with con-
stant parameter �. The third type is heteroscedastic Gaussian
noise, cf. [6]. The heteroscedastic noise matrix N in the model
(23) is conditionally Gaussian given the parameters �n` for
n = 1, . . . , N and ` = 1, . . . , L and conditionally independent
across sensors and measurement vectors,

p(N |⌃) =
LY

`=1

NY

k=1

1
(2⇡�2

k`
)
e�|nk`|2/�

2
n` , (35)

The parameter matrix ⌃ = (�n`) is an i.i.d. random matrix,

�n` = � sn` with sn` =
tn`q

1
NL

P
n

P
`
t2
n`

(36)

tn` = 10Un` , where Un` is uniformly on [�1, 1]. (37)

The deterministic parameter � is used to define the SNR in the
plots. Fig. 1 shows the performance in terms of the root mean
squared error (RMSE) of several DOA estimators for a single
plane wave hidden in additive noise. These RMSE results are
obtained for the DOA estimators based a single measurement
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Fig. 1. RMSE of DOA estimate for a single DOA �45� (20 element uniform
linear array, single measurement vector, L = 1) with additive noise, (a)
Laplace-like, (b) Gaussian, (c) heteroscedastic Gaussian.

vector, L = 1, as derived in Sec. II. Blue curve: CBF, red
curve: DOA estimator which maximizes the weighted phase-
only beamformer (18), black curve with ’�’-markers: LAD
estimator (7), magenta curve with ’*’-markers: sparse bayesian
learning SBL3 [6]. The results for Laplace-like and Gaussian
noise in Figs. 1ab are all very close to eachother they all
reach the asymptotic regime above the threshold SNR⇡ 15 dB.
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Fig. 2. RMSE of DOA estimate for a single DOA �45� (20 element uniform
linear array, multiple measurement vector, L = 4) with additive noise, (a)
Laplace-like, (b) Gaussian, (c) heteroscedastic Gaussian.

For heteroscedastic noise, however, the difference in estimator
performance is clearly seen in Fig. 1c and the LAD-based
DOA estimator has the lowest RMSE over the whole SNR
range. The weighted phase-only beamformer approaches the
LAD-based DOA estimator for low SNR.

Fig. 2 shows RMSE results for several DOA estimators
using L = 4 measurement vectors as derived in Sec. II. For
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the CBF, the RMSE of the DOA estimate compared to single
measurement vector shows a shift in SNR of 6 dB compared
to Fig. 1. The corresponding shifts in SNR for the weighted
phase-only beamformer (18) and LAD estimator (7) are either
similar or higher than 6 dB. Figs. 1c and 2c also reveal that
CBF and SBL3 suffer from heteroscedastic noise at low SNR
in contrast to the weighted phase-only beamformer (18) and
LAD-based DOA estimator (22). It is also seen in Fig. 2 that
SBL3 significantly outperforms the other DOA estimators at
high SNR. This behavior is due to the fact that the true source
location is on the search grid.

Finally, we simulate three plane waves with DOAs ✓ =
[�2�, 3�, 75�]. The minimization of (34) over a discrete grid
with 1� spacing requires

�181
3

�
= 971970 evaluations. The

minimization is approximated by reducing ⇥ to 50000 DOA
combinations. The search is carried out over the subset of
combinations with the lowest 50000 objective function values
without noise. Fig. 3 shows the approximate RMSE of DOA
results for the LAD-based DOA estimator (34) using L = 4
measurement vectors. The noise distribution is more heavy
tailed in the heteroscedastic case, than Laplace-like or Gauss.
Fig. 3 confirms that.

V. CONCLUSION

The weighted phase-only beamformer is a low-cost approx-
imation to a beamformer based on the LAD criterion. The
weighted phase-only beamformer performs well in terms of
RMSE of its DOA estimate for a single DOA at low SNR
for all three investigated noise types. Finally, we compare
the RMSE of several different DOA estimators versus SNR
in simulations: the CBF, weighted phase-only beamformer,
LAD-based estimator, and sparse Bayesian learning (SBL3).
The simulations indicate that the LAD-based DOA estimator
and weighted phase-only beamformer are less sensitive to
heteroscedastic noise than SBL3.
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Fig. 3. RMSE of DOA estimates at true DOAs [�2�, 3�, 75�] (20 ele-
ment uniform linear antenna array, multiple measurement vector, L = 4)
hidden in additive complex circularly symmetric (a) Laplace-like noise, (b)
homoscedastic Gaussian noise, (c) heteroscedastic Gaussian noise.
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