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Abstract—The Variational Autoencoder (VAE) is a popular
generative latent variable model that is often used for represen-
tation learning. Standard VAEs assume continuous-valued latent
variables and are trained by maximization of the evidence lower
bound (ELBO). Conventional methods obtain a differentiable
estimate of the ELBO with reparametrized sampling and op-
timize it with Stochastic Gradient Descend (SGD). However, this
is not possible if we want to train VAEs with discrete-valued
latent variables, since reparametrized sampling is not possible.
In this paper, we propose an easy method to train VAEs with
binary or categorically valued latent representations. Therefore,
we use a differentiable estimator for the ELBO which is based
on importance sampling. In experiments, we verify the approach
and train two different VAEs architectures with Bernoulli and
categorically distributed latent representations on two different
benchmark datasets.

Index Terms—variational autoencoder, discrete latent vari-
ables, importance sampling

I. THE VARIATIONAL AUTOENCODER

The Variational Autoencoder (VAE) is a generative model
which is trained to approximate the true data generating
distribution p(x) of an observed random vector x from a
given training set D = {x1, ...,xN} [1, 2]. It is an especially
suited model if x is high dimensional or has highly nonlinear
dependent elements. Therefore, the VAE is often used for tasks
like density estimation, data generation, data interpolation [3],
outlier and anomaly detection [4, 5] or clustering [6, 7].

The VAE is an latent variable model, where the observations
x ∼ p(x|z) are dependent on latent variables z ∼ p(z).
During training, the VAE maximizes the probability p(x) to
observe the data x. Therefore, the negative evidence lower
bound (ELBO)

L(θ) = −LL(θ) + LKL(θ) (1)
= −Eq(z|x) [ln p(x|z)] + DKL(q(z|x)||p(z)) (2)
= − ln p(x) + DKL(q(z|x)||p(z|x)) (3)

is minimized, where p(z|x) = p(x|z)p(z)/
∫
p(x|z)p(z)dz

is the true but intractable posterior distribution the model
assigns to z, q(z|x) is the corresponding tractable variational
approximation and DKL(q(z|x)||p(z|x)) is the Kullback-
Leibler (KL) divergence between p(z|x) and q(z|x). Because
DKL(q(z|x)||p(z|x)) > 0, minimizing L(θ) means to maxi-
mize the probability p(x) the model assigns to observations x.
Therefore, DKL(q(z|x)||p(z|x)) must be as close as possible

to 0, meaning that after training q(z|x) is a very good
approximation of the true posterior p(z|x). [1] proposed to
minimize L(θ) using stochastic gradient descent, which they
called Stochastic Gradient Variational Bayes (SGVB).

The VAE uses parametric distributions that are parametrized
by an encoder network with parameters θE and a decoder
network with parameters θD for both q(z|x) and p(x|z),
respectively. This leads to the well known encoder-decoder
structure in Fig. 1. The data likelihood is a distribution with
mean x̂ that is the output of the decoder network. Further, we
assume in this paper that the variational posterior q(z|x) is a
distribution from the exponential family

q(z|x) = exp(ηT (x;θE)T (z)−A(η(x;θE))) (4)

with natural parameters η(x;θE), sufficient statistic T (z)
and log partition function A(η(x;θE)). This gives us the
flexibility to study training with different q(z|x) in the same
mathematical framework. As shown in Fig. 1, the natural
parameters η are the output of the encoder network, where
we drop the arguments x,θE for shorter notations in the
remainder of the paper.

θE θDx x̂
zη

Encoder Decoder

Fig. 1: The encoder-decoder structure of a VAE. The encoder
parametrizes q(z|x) as an exponential family distribution with
natural parameters η and the decoder parametrizes p(x|z).

The conventional VAE proposed in [1, 2] learns
continuous latent representations z ∈ Rc. It
uses i.i.d. Gaussian distributed z, meaning that
η = [µ1/σ

2
1 ,−1/(2σ2

1), ..., µc/σ
2
c ,−1/(2σ2

c )]
T ,

T (z) = [z1, z
2
1 , ..., zc, z

2
c ]

T and A(η) are chosen such
that q(z|x) integrates to one. The likelihood is also
Gaussian with p(x|z) ∼ N(x̂,1). But in many applications
learning discrete rather than continuous representations is
advantageous. Binary representations z ∈ {0, 1}c can, for
example, be used very efficiently for hashing, which is a
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powerful method for large-scale visual search [8]. Learning
categorical representations z ∈ {e1, ..., ec} is interesting,
because this naturally leads to clustering of the data x.
Further, for both binary and categorical z, it is easy to find
entropy based heuristics to choose the size of the latent space,
because the entropy is bounded for discrete z.

However, training VAEs with discrete latent representations
is problematic, since standard SGVB can not be applied for
optimization. Because SGVB is a gradient based method, we
need to calculate the derivative of the two cost terms in Eq. 1
with respect to the encoder and decoder parameters

∂

∂θ
LKL(θ) =

∂

∂θ
DKL(q(z|x)||p(z)) (5)

∂

∂θ
LL(θ) =

∂

∂θ
Eq(z|x) [ln p(x|z)] , (6)

where LKL(θ) only depends on the encoder parameters and
the expected log-likelihood term LL(θ) depends on both en-
coder and decoder parameters. For a suited choice of p(z) and
q(z|x), LKL(θ) can be calculated in closed form. However,
LL(θ) contains an expectation over z ∼ q(z|x) that has to
be estimated during training. A good estimator L̂L(θ) for
LL(θ) that is unbiased, differentiable with respect to θ and
has low variance is the key to train VAEs. SGVB uses an
estimator L̂R

L(θ) that is based on reparametrization of q(z|x)
and sampling [1]. However, as described in section II, this
method places many restrictions on the form of q(z|x) and
fails if q(z|x) can not be reparametrized. This is the difficulty
if z is discrete.

In this paper, we propose a simple and differentiable esti-
mator L̂I

L(θ) for LL(θ) that is based on importance sampling.
Because no reparametrization is needed, it can be used to
train VAEs with binary or categorical latent representations.
Compared to previously proposed methods like the Vector
Quantised-Variational Autoencoder (VQ-VAE) [9] based on
a straight-through estimator for the gradient of LL(θ) [10] or
methods based on continuous relaxation of discrete variables
[11–13], our proposed estimator has two advantages: It is
unbiased and, compared to methods based on continuous
relaxation, there is no need to tune additional parameters like
the temperature term of the Gumbel-Softmax [12].

II. ESTIMATING THE EXPECTED LOG-LIKELIHOOD WITH
REPARAMETRIZED SAMPLING

The standard estimator L̂R
L(θ) proposed in [1] is based on

reparametrized sampling

∂

∂θ
LL(θ) =

∂

∂θ
Eq(z|x) [ln p(x|z)] (7)

=
∂

∂θ
Ep(ε) [ln p(x|z = f(ε,θ))] (8)

≈ ∂

∂θ

1

M

M∑
m=1

ln p(x|z = f(εm,θ)) (9)

=
∂

∂θ
L̂R
L(θ) (10)

where ε is a random variable with the distribution p(ε), εm are
samples from this distribution and f(ε,θ) is a reparametriza-
tion function such that z = f(ε,θ) ∼ q(z|x). This estimator
can be used to train VAEs with SGVB if two conditions are
fulfilled:

1) There exists a distribution p(ε) and a reparametrization
function f(ε,θ) such that z = f(ε,θ) ∼ q(z|x).

2) The derivative of Eq. 6 must exist.
With Eq. 9, we obtain

∂

∂θ
L̂R
L(θ) =

1

M

M∑
m=1

∂

∂z
ln p(x|z = f(εm,θ))

∂

∂θ
z. (11)

This means both the reparametrization function f(ε,θ) and
ln p(x|z) must be differentiable with respect to θ and z,
respectively, to allow direct backpropagation of the gradient
through the reparametrized sampling operator. If these con-
ditions are fulfilled, the gradient can flow directly from the
output to the input layer of the VAE as shown in Fig. 2.
Distributions over discrete latent representations z can not be
reparametrized in this way. Therefore, this estimator can not
be used to train VAEs with such representations.

θE θDx x̂
zη

Encoder Decoder

∂
∂z L̂

R
L(θ)

∂
∂θz

Fig. 2: The gradient flow through the VAE, using L̂R
L(θ)

based on reparametrized sampling. The gradient is propagated
directly through the reparametrized sampling operator.

III. ESTIMATING THE EXPECTED LOG-LIKELIHOOD WITH
IMPORTANCE SAMPLING

We propose an estimator L̂I
L(θ) which is based on impor-

tance sampling and can also be used to train VAEs with binary
or categorical latent representations z. Expanding Eq. 6 leads
to

∂

∂θ
LL(θ) =

∂

∂θ

∫
ln p(x|z)q(z|x)dz (12)

=
∂

∂θ

∫
ln p(x|z)q(z|x)

qI(z)
qI(z)dz (13)

≈ ∂

∂θ

1

M

(
M∑

m=1

ln p(x|zm)
q(zm|x)
qI(zm)

)
(14)

=
∂

∂θ
L̂I
L(θ), (15)

where qI(z) is an arbitrary distribution of the same form as
q(z|x) and is independent from the parameters θ. zm ∼ qI(z)
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are samples from this distribution. The estimator computes
a weighted sum of the log-likelihood ln p(x|zm) with the
weighting q(zm|x)/qI(zm).

The benefit is that the log-likelihood ln p(x|zm) depends
on the decoder parameters θD only and not on the encoder
parameters θE whereas the weighting q(zm|x)/qI(zm) de-
pends only on θE and not on θD. Therefore, calculation of
the gradient of L̂I

L(θ) can be separated

∂

∂θ
L̂I
L(θ) =

[
∂

∂θE
L̂I
L(θ),

∂

∂θD
L̂I
L(θ)

]
, (16)

with

∂

∂θE
L̂I
L(θ) =

1

M

M∑
m=1

ln p(x|zm)
∂

∂θE

q(zm|x)
qI(zm)

(17)

∂

∂θD
L̂I
L(θ) =

1

M

M∑
m=1

q(zm|x)
qI(zm)

∂

∂θD
ln p(x|zm). (18)

As shown in Fig. 3, gradient backpropagation is split into
two separate parts. ∂

∂θD
L̂I
L(θ) backpropagates the gradient of

ln p(x|z) from the output of the VAE to the sampling operator
and ∂

∂θE
L̂I
L(θ) backpropagates the gradient q(z|x)

qI(z)
from the

sampling operator to the input layer of the VAE.

θE θDx x̂
zη

Encoder Decoder

ln p(x|z) ∂
∂θE

q(z|x)
qI(z)

q(z|x)
qI(z)

∂
∂θD

ln p(x|z)

Fig. 3: Gradient flow through the VAE when using L̂I
L(θ),

based on importance sampling.

Compared to L̂R
L(θ), we do not need to find a differentiable

reparametrization for q(z|x), because we do not propagate the
gradient through the sampling operator. Therefore, L̂I

L(θ) can
also be used if no reparametrization function exists for q(z|x).
This is the case for a Bernoulli or a Categorical distribution
of latent variables.

IV. VAE WITH BERNOULLI DISTRIBUTED z (BVAE)

Assume that the latent representation z has i.i.d. Bernoulli
distributed components, i.e. both the variational posterior
distribution q(z|x) and qI(z) have the form

q(z|x) = exp(ηT z−A(η)) (19)
qI(z) = exp(ξT z−A(ξ)), (20)

where z ∈ {0, 1}c, η = [ln(q1/(1 − q1)), ..., ln(qc/(1 − qc))]
is the output vector of the encoder containing the logits of the
independent Bernoulli distributions and A(η) = 1T ln(1+eη)
is the corresponding log-partition function.

Hence, Eq. 17 is

∂

∂θE
L̂I
L(θ) =

1

M

M∑
m=1

ln p(x|zm)
∂

∂η
exp

(
(η − ξ)T zm

− (A(η)−A(ξ))
)( ∂

∂θE
η

)
(21)

=
1

M

M∑
m=1

ln p(x|zm) exp
(
(η − ξ)T zm

− (A(η)−A(ξ))
)
(zm − q)

T

(
∂

∂θE
η

)
(22)

where q = [q1, ..., qc]
T = 1

1+e−η contains the probabilities
q(zi = 1|x). The variance of the estimator L̂I

L(θ) heavily
depends on the choice of the natural parameters ξ of the
distribution qI(z). We choose ξ = η, leading to a gradient
of the very simple form

∂

∂θE
L̂I
L(θ) =

1

M

M∑
m=1

ln p(x|zm) (zm − q)
T

(
∂

∂θE
η

)
.

(23)
This estimator is also known as the score function estimator

of the gradient or as REINFORCE algorithm [14] and has the
desirable property for training, which can be easily seen in
the one dimensional case with z ∈ {0, 1}. The mean of the
estimator is

EqI(z)

[
∂

∂θE
L̂I
L(θ)

]
=

= EqI(z)

[
1

M

M∑
m=1

ln p(x|zm) (zm − q)
(

∂

∂θE
η

)]
(24)

= q(1− q)(ln p(x|z = 1)− ln(p(x|z = 0))

(
∂

∂θE
η

)
(25)

=
∂

∂θE
LL(θ). (26)

The estimator is unbiased.

V. VAE WITH CATEGORICALLY DISTRIBUTED z (CVAE)
For categorically distributed z, both the variational posterior

distribution q(z|x) and qI(z) again have the form

q(z|x) = exp(ηT z−A(η)) (27)
qI(z) = exp(ξT z−A(ξ)), (28)

but now z ∈ {e1, ..., ec} can assume only c differ-
ent values. The vector of natural parameters is η =
[ln(p1/pc), ..., ln(pc−1/pc), 0)] and the log partition function
is A(η) = ln1T eη .

With the formulas above, we arrive at the same form of the
expected gradient of the log-likelihood

∂

∂θE
L̂I
L(θ) =

1

M

M∑
m=1

ln p(x|zm) (zm − q)
T

(
∂

∂θE
η

)
,

(29)
but now with q = softmax(η) containing the probabilities
qi = q(z = ei) with

∑c
i=1 qi = 1.
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(a) Input FC BVAE (b) Generated FC BVAE (c) Input FC CVAE (d) Generated FC CVAE

Fig. 4: Test input images and generated handwritten images of the FC BVAE and FC CVAE
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Eq(z|x) [ln p(x|z)]

log-likelihood

Fig. 5: Convergence of the loss, log-likelihood and gradient
variance over 300 epochs of training on the MNIST dataset.

VI. EXPERIMENTS

In the following section, we show our preliminary experi-
ments on the MNIST and Fashion MNIST datasets [15, 16].
Two different kinds of VAEs have been evaluated:

1) The BVAE with Bernoulli distributed z ∈ {0, 1}c.
2) The CVAE with categorically distributed z ∈
{e1, ..., ec}.

To train both architectures, the estimator L̂I
L(θ) derived in

Sec. IV and V is used.
Both BVAE and CVAE are tested with two different ar-

chitectures given in Tab. I. The fully connected architecture
has 2 dense encoder and decoder layers. The encoder and
decoder networks of the convolutional architecture consist of
4 convolutional layers and one dense layer each.

In our first experiment, we train a FC BVAE with c = 50,
i.e. z ∈ {0, 1}50 and a FC CVAE with c = 100, i.e. z ∈
{z1, ..., z100}. We train them for 300 epochs on the MNIST
dataset, using SGVB with our proposed estimator L̂I

L(θ), to
estimate the expected log-likelihood, and ADAM as optimizer.
Fig. 5 shows the convergence of the loss and the log-likelihood
the VAEs assign to the training data ln p(x|z) for a learning
rate of 10−3 and a batch size of 2048. During training, the loss
decreases steadily without oscillation. Furthermore, the results
of the corresponding simulations with the CNN BVAE and the
CNN CVAE are shown in Fig. 5.

TABLE I: The architectural details of the trained VAEs. FC,
Conv and Conv−1 are the fully connected, convolutional
and deconvolutional layer, respectively. The shape of the
convolutional layers is given in the form DimA × DimB ×
Channel/Stride/Activation.

Architecture In/Out Encoder Latent Decoder
FC BVAE 784 FC 1024/ReLu z ∈ Rc ∼

Ber( 1
1+e−η )

FC 1024/ReLu

or
FC CVAE

FC c/linear or z ∈ Rc ∼
Cat( eη

e1
T η

)
FC 784/sigmoid

CNN BVAE 28x28x1 Conv 3x3x32/2/ReLu z ∈ Rc ∼
Ber( 1

1+e−η )
FC c/ReLu

or
CNN CVAE

Conv 3x3x64/2/ReLu or z ∈ Rc ∼
Cat( eη

e1
T η

)
reshape

Conv 3x3x64/2/ReLu Conv−1 3x3x64/2/ReLu
Conv 3x3x128/2/ReLu Conv−1 3x3x64/2/ReLu
flatten Conv−1 3x3x32/2/ReLu
FC c/linear Conv−1 3x3x1/2/sigmoid

The performance of the FC CVAE is worse than the per-
formance of the FC BVAE. Training converges to a lower
log-likelihood ln p(x|z), because the maximal information
content HCVAE(z) ≤ ln(100) of the latent variables of the
FC CVAE is much less than the maximal information content
HBVAE(z) ≤ c ln(2) of the latent variables of the FC BVAE.
The FC CVAE can at maximum learn to generate 100 different
handwritten digits, what is a small number compared to the
250 different images that the FC BVAE can learn to generate.

Fig. 4 shows handwritten digits that are generated by the
FC BVAE and the FC CVAE if we sample z from the
variational posterior q(z|x). To draw samples from q(z|x),
we feed test data which has not been seen during training to
the encoders. The test data is shown in Fig. 4a and Fig. 4c.
The corresponding reconstructions generated by the decoders
are shown in Fig. 4b and Fig. 4d. Both input and reconstructed
images are very similar in case of the FC BVAE, meaning that
it can approximate the data generating distribution p(x) well.
However, in case of the FC CVAE, the generated digits are
blurry and look very different than the input of the encoder.
As shown in Fig. 6, our estimator is also applicable to deeper
convolutional architectures. The resulting image quality of
the generated images of the CNN BVAE and CNN CVAE is
comparable to the one of the FC BVAE and the FC CVAE.
Additionally, the input and reconstructed images for the second
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(a) Input CNN BVAE (b) Generated CNN BVAE (c) Input CNN CVAE (d) Generated CNN CVAE

Fig. 6: Test input images and generated handwritten images of the CNN BVAE and CNN CVAE

dataset of the FC BVAE are shown in Fig. 7. Because of the
higher complexity of the FMNIST dataset and the same low
model capacity, the quality of the generated images is lower
than for the MNIST dataset.

A major drawback of the FC CVAE is that the latent space
of the FC CVAE can encode only very little information.
Since the FC CVAE can only learn to generate 100 different
images, its decoder learns to generate template images that fit
well to all the training images. We observe that some latent
representations are decoded to meaningless patterns that just fit
well to the data in avarage. However, the decoder also learned
to generate at least one template image for each class of
handwritten digits. Hence, the categorical latent representation
could be interpreted as the cluster affiliation and the encoder
of the FC CVAE automatically learns to cluster the data.
However, we think that they can be increased considerably
if we allow a hybrid latent space with some continuous latent
variables as proposed in [17]. This could lead to a powerful
model for nonlinear clustering.

(a) Input FC BVAE (b) Generated FC BVAE

Fig. 7: Test input images and generated images of the
FC BVAE on the fashion MNIST dataset.

VII. CONCLUSION

In this paper, we derived an estimator for the gradient of the
ELBO which does not rely on reparametrized sampling and
therefore can be used to obtain differentiable estimates, even
if reparametrization is not possible, e.g. if the latent variables
z are Bernoulli or categorically distributed. We have shown
the results with two different architectures on two datasets.
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