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Abstract—We consider hyperspectral complex domain imag-
ing from hyperspectral complex-valued noisy observations. The
proposed algorithm is based on singular value decomposition
(SVD) of observations and complex domain block-matching 3D
(CDBM3D) filtering in optimized SVD eigenspace. Simulation
experiments demonstrate high efficiency of the proposed complex
domain joint filtering of hyperspectral data in comparison
with CDBM3D filtering of separate 2D slices of hyperspectral
cubes as well as with respect to joint real domain independent
phase/amplitude filtering this kind of data.

Index Terms—Hyperspectral imaging, singular value decom-
position, sparse representation, noise filtering, noise in imaging
systems

I. INTRODUCTION

Hyperspectral imaging (HSI) is applied in variety of ap-
plications, in particular, earth surface remote sensing [1],
medical and bio-medical sciences [2]. Typically, HSI retrieves
a valuable information based on images obtained across a wide
range of electromagnetic spectrum with hundreds to thousands
of spectral channels. These images are two-dimensional (2D)
and stacked together in 3D cubes, where (x, y) are transverse
spatial coordinates and the third coordinate is for a spectral
channel, which usually is represented by wavelength λ.

Complex domain HSI makes a special class of the hy-
perspectral problems since variables of interest are complex-
valued and both phase and amplitude have to be reconstructed.
It is a very promising technique which doubles amount of
retrieved information in comparison with real-valued HSI,
since hyperspectral cubes are complex-valued, i.e. each of
the 2D images for each wavelength is complex-valued with
2D phase and amplitude. Complex-valued hyperspectral (HS)
cubes may appear as the Fourier transform of observed real-
valued variables (e.g. [3]) or as direct measurements of
real and imaginary parts of complex-valued parameters. For
instance, in magnetic resonance imaging (MRI) and func-
tional magnetic resonance imaging (fMRI), images or voxel
measurements are complex valued (e.g. [4]). Recently, HS
digital holography has been developed, which, additionally to
the conventional holography, is able to recover a spectrally
resolved phase/amplitude information (e.g. [5], [6]).

In many applications, HS cubes are derived from indirect
observations as solutions of inverse problems, what leads to a
serious noise amplification. A sliding window averaging along
wavelength dimension is used routinely for noise suppression
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(e.g. [5], [6]), but this straightforward technique may result
in oversmoothing of details of interest. Some sophisticated
algorithms for separate filtering phase and amplitude slices
are proved being more efficient for HSI [7].

A novel effective denoising algorithm taking into consider-
ation phase/amplitude correlation between and within slices
of HS cubes is a contribution of this paper. We illustrate
the performance of the proposed algorithm by simulation
experiments, where the clean HS signals are known and the
noise in observations is complex-valued circular Gaussian.
The developed algorithm is a complex domain version of the
real domain HSI algorithm developed in [8].

II. PROBLEM FORMULATION

Let U(x, y, λ) ⊂ CN×M be a slice N × M on (x, y)
of a complex-valued hyperspectral cube provided a fixed
wavelength λ, and QΛ(x, y) = {U(x, y, λ), λ ⊂ Λ}, QΛ ⊂
CN×M×LΛ be the whole cube composed of the set of the
wavelengths Λ with number of individual wavelengths LΛ.

The total size of the cube is N ×M ×LΛ pixels. The third
dimension rows of QΛ(x, y) contain LΛ spectral observations
corresponding to the scene with fixed coordinates (x, y). Then,
the noisy HS observations with the additive noise may be
written as:

ZΛ(x, y) = QΛ(x, y) + εΛ(x, y), (1)

where ZΛ, QΛ, εΛ ⊂ CN×M×LΛ represent noisy HS data,
clean HS and additive noise, respectively.

Accordingly to the notation for the clean image, the noisy
cube can be represented as ZΛ(x, y) = {Z(x, y, λ), λ ∈ Λ},
ZΛ ⊂ CN×M×LΛ with slices Z(x, y, λ).

The denoising problem is formulated as reconstruction of
unknown QΛ(x, y) from the given ZΛ(x, y).

The properties of the clean HS cube QΛ(x, y) and the noise
εΛ(x, y) are essential for the algorithm development.

The following three assumptions are basic hereafter.
1) Similarity of HS slices U(x, y, λ) for close values of λ

follows from the fact that usually the slides U(x, y, λ)
are slowly varying on λ. It follows, that at least the
spectral lines of QΛ(x, y) of the length LΛ live in a
p-dimensional subspace with p � LΛ. Therefore, there
is a linear transform E reducing the size of the cube
QΛ(x, y) to the cube of the smaller size. Following
[8], we herein term the images associated with this p-
dimensional subspace as eigenimages. A smaller size of
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this subspace automatically means a potential to improve
the HSI denoising and to obtain a faster algorithm.

2) Sparsity of 2D images U(x, y, λ) as functions of (x, y)
means that there are bases such that U(x, y, λ) can be
represented with a small number of atoms. It is one
of the natural and fundamental assumptions for design
of modern image processing algorithms. The sparsity
for complex-valued images is quite different from the
standard formulation of this concept for real-valued
signals. The complex-valued variables can be defined
by any of two pairs: amplitude/phase or real/imaginary
values and elements of these pairs usually are correlated
[5], [9]. Thus, the sparsity can be introduced for different
variables: directly for complex-valued or for the real-
valued pairs: amplitude/phase or real/imaginary values.

3) The noise εΛ(x, y) is zero mean circular Gaussian with
unknown spectral correlation matrix LΛ × LΛ.

Clean image subspace identification is an important step in
the developed algorithm. Estimates of the signal and noise
correlation matrices are used to selects p-subspaces of eigen-
images that represent the signal subspace in the best least-
square error sense.

III. PROPOSED ALGORITHMS

We present and demonstrate two types of the algorithms for
HSI: separate and joint denoising of HS images.

A. Separate denoising of HS images

The algorithms of this group filter the images of the
hyperspectral cube for each wavelength independently with
results which can be shown as

Û(x, y, λ) = CDBM3D{Z(x, y, λ)}, λ ∈ Λ, (2)

where CDBM3D is an abbreviation for Complex Domain
Block-Matching 3D filter and Û(x, y, λ) is an estimate of the
clean unknown slice U(x, y, λ).

Various CDBM3D algorithms are publicly available in
MATLAB codes [10], [11].

These algorithms are complex-domain developments of
the popular real-valued Block-Matching 3D (BM3D) filters
[12]. Two points define the potential advantage of CDBM3D
in comparison, in particular, with real-valued BM3D used
independently for phase and amplitude as it is in [7], [13].
First, CDBM3D processes phase and amplitude jointly taking
into consideration correlation of these variables quite usual in
most applications. An independent filtering of amplitude and
phase ignores this correlation. Second, the basic functions used
for processing of grouped data in BM3D are fixed, while in
CDBM3D they are varying data adaptive based on SVD and
high-order SVD (HOSVD) of variables.

The both types of the algorithms, BM3D and CDBM3D, are
based on nonlocal similarity of small patches of 2D images.
The algorithms look for the similar patches, say in slices
Z(x, y, λ), identify them and process together.

A generic CDBM3D algorithm has a structure shown in
Fig. 1 composed from two successive stages: thresholding

and Wiener filtering. Each of these stages includes: grouping
mentioned above, SVD or HOSVD analysis, thresholding or
Wiener filtering for the grouped data spectra and aggregations
of the filtered spectra to get intermediate and final image
estimates.

Following procedure in patch-based image processing, a
noisy image Z(x, y, λ) ⊂ CN×M taken with a fixed λ is
partitioned into small overlapping rectangular/squares N1×M1

patches and this partitioning is produced for each pixel of the
image. For each patch, we search in Z(x, y, λ) for similar
patches, identify them and stack together in 3D arrays (ten-
sors). This procedure is called grouping. It follows by HOSVD
of these groups defining data-adaptive orthonormal transforms
of the complex-valued groups and the core tensors giving the
spectral representations of the grouped variables. The next step
of the algorithm, as shown in Fig. 1, is filtering implemented
as thresholding (zeroing for hard-thresholding) of small items
of the core tensors. Inverse HOSVD using the thresholded core
tensors returns block-wise estimates of the denoised images.
These multiple estimates are aggregated in order to obtain
improved image estimates calculated as weighted group-wise
mean estimates.

These grouping, HOSVD, thresholding and aggregation
define the so-called thresholding filtering. The image filtered
by thresholding is an input signal of the second stage of the
CDBM3D algorithm - Wiener filtering. The structure of this
second part of the algorithm is similar to the thresholding stage
with the only difference that the thresholding is replaced by
the Wiener filtering.

An output of the Wiener filter is an output of the CDBM3D
algorithm. The details of the thresholding and Wiener filtering
can be seen in [9]–[11].

Fig. 1. Flow chart of complex domain BM3D/BM4D filters.
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It is demonstrated in [9], [11], that the HOSVD analysis
can be produced using instead of complex-valued variables
the real-valued pairs amplitude/phase or real/imaginary parts
of complex-valued variables. Then, the groups become 4D
arrays and 4D HOSVD is used for the spectral analysis and
filtering. The corresponding complex-domain filters are named
as CDBM4D. The flow chart in Fig. 1 presents the generic
structure of the both types of these algorithms, where we show
both 3D and 4D HOSVD.

The CDBM3D algorithm is originated from [10], where the
hard-thresholding filtering is used only and HOSVD is applied
to 3D groups composed from complex-valued observations.
The simulation experiments in this paper are restricted to this
single-stage algorithm as the fastest version of CDBM3D.

B. Joint denoising of HS images

This algorithm is developed specially for joint processing of
slides of a HS cube and presented in the following notation:

ÛΛ(x, y) = CCF{Zλ(x, y), λ ⊂ Λ}. (3)

Complex domain Cube Filter (CCF) processes the data of the
cube ZΛ(x, y) jointly and provides the estimates ÛΛ(x, y) for
all λ ∈ Λ.
CCF is built from the following steps:
1) Reshape 3D data cube ZΛ of size N ×M ×L Λ to the

2D matrix Z of the size LΛ ×NM : N ×M × LΛ →
LΛ ×NM ;

2) Calculate an orthonormal transform matrix E ⊂ CLΛ×p

and 2D transform domain eigenimages Z2,eigen for the
matrix Z as

[E,Z2,eigen, p] = HySime(Z), (4)

where HySime stays for Hyperspectral signal Subspace
Identification by Minimum Error [14].
HySime is an important part of the CCF algorithm. It
identifies an optimal subspace for the HS image repre-
sentation including both the dimension of the eigenspace
p and eigenvectors - columns of E. When E is given,
the eigenimages are calculated as

Z2,eigen = EHZ. (5)

3) Reshape the 2D transform domain Z2,eigen of size p×
MN to the 3D image domain array Z3,eigen of size
N ×M × p : p×NM → N ×M × p;

4) Filter each of N × M images (slices) of Z3,eigen by
CDBM3D:

Ẑ3,eigen(x, y, λs) = CDBM3D(Z3,eigen(x, y, λs)),
(6)

where λs identify the images of the eigenspace.
5) Reshape the 3D array Ẑ3,eigen(x, y, λs) to the 2D trans-

form domain Ẑ2,eigen of size p×NM and go back from
the eigenimage space to the 2D image space:

Ẑ2 = EẐ2,eigen. (7)

Here E stands for inverse of the p-transform (5).

6) Reshape the 2D image Ẑ2 to original HS cube size N×
M × LΛ, it gives the filtered cube ÛΛ(x, y) (3).

These multiple forward and backward passages 2D � 3D
allow to define the 2D eigenspace Z2,eigen in the p-transform
domain and to produce the filtering in the corresponding 3D
domain Z3,eigen. In order to return these filtered data Ẑ3,eigen

in the original image space, we need to use 2D transform (7)
and, then, again to reshape 3D data into 2D space.

The SVD based algorithm HySime solves the following
problems: estimation of noise, estimation of noise covariance
matrix and optimization of the signal subspace minimizing
mean-square error between the clean HS UΛ(x, y) and its
estimate. Note, that the covariance rλ,λ′ in HySime is obtained
by averaging over (x, y) and the preliminary estimate of HS
images is used in HySime, which is different from the final
HS estimate as defined by (7).

Optimization of the subspace in HySime results in minimiza-
tion of its size p and usually p� LΛ, which simplifies the data
processing and leads to the faster algorithm. The CDBM3D
filtering is produced only for p eigenimages but the backward
transform (7) gives the estimates for all LΛ spectral images.

The HySime algorithm for real-valued HSI is derived in [14],
where its background and details can be seen.

Our analysis produced for the derivation given in [14]
proves that this algorithm is applicable in complex domain
within slight modifications concerning a work with complex-
valued variables.

Overall, the presented CCF algorithm follows the structure
of the fast denoising algorithm derived for real-valued HSI [8].
The principal difference between our and this algorithm is in
the filters used for denoising: real domain BM3D in FastHyDe
and complex domain CDBM3D in CCF .

IV. SIMULATION EXPERIMENTS

Simulation experiments are produced for the complex-
valued wavefronts obtained from propagation of HS coherent
beam through thin transparent object. Then, the phase delay
is proportional to the thickness of the object and calculated in
radians as

ϕ(x, y) = 2π
h(x, y)

λ
(nλ − 1), (8)

where λ is a wavelength of the wavefront (Λ = 400−800 nm)
with total number of slices LΛ = 200, h(x, y) is an object’s
thickness, and nλ is the refractive index of optical material of
the object.

The clean HS cube is calculated as

QΛ(x, y) = {U(x, y, λ), λ ⊂ Λ}, (9)

where U(x, y, λ)=A(x, y) · exp(jϕ(x, y)).
For simplicity, we assume totally transparent object, that

means that the amplitude A(x, y) of HS wavefronts is equal
to 1, i.e. optical absorption of the object is negligible.

The function h(x, y) is a two-peak surface illustrated in
Fig. 2(a, b) by the absolute and wrapped phases ϕ for
the wavelength λ = 598 nm, correspondingly. The additive
Gaussian noise power is described by standard deviation σ.
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Fig. 2. Object and filtered phases. Clear absolute (a) and wrapped object
phases (b), noisy observed phase (c), wrapped phase reconstructions by the
BM3D (d), CDBM3D (e), FastHyDe (f), and CCF (g) algorithms. The
visual and numerical advantage of CCF is obvious.
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Fig. 3. Distribution of RMSEs over wavelengths for the compared algorithms:
curve with squares (black) is for BM3D, with triangles (blue) for CDBM3D,
with stars (magenta) for FastHyDe, with circles (red) for CCF . The upper
nearly horizontal curve with diamonds (green) is for the observed noisy
phase provided σ = 0.3π. FastHyDe, magenta curve with stars, demonstrates
performance closest to CCF but with a valuable advantage of the latter.

We compare the CCF algorithm versus CDBM3D, where
the slices Z(x, y, λ) are processed independently in the com-
plex domain, and versus BM3D where the real domain filtering
produced for phase and amplitude independently. Additionally,
a comparison versus FastHyDe [8] applied to the real-valued
cube of the noisy phases calculated for noisy observations
Eq.(1) is presented. The results are shown in Figs. 2 - 4.

Figs. 2 and 3 provide a visual and numerical comparison
of the algorithms with a fixed value of the noise standard
deviation σ = 0.3π, while Fig. 4 shows RMSE values as
functions of σ.

Fig. 2(d) illustrates filtering of a noisy wrapped phase of the
slice Z(x, y, λ) by BM3D. The results for the more advanced
CDBM3D and the proposed CCF are shown in Fig. 2 (e)
and Fig. 2 (g), respectively. In Fig. 2 (f), we can see the
results obtained by FastHyDe. The visual advantage of the
CCF algorithm is obvious and supported by the lowest value
of RMSE equal to 0.079.

RMSE curves for the each filtering algorithm and for the
observed noisy phase are presented in Fig. 3 as functions
of λ, σ = 0.3π. The curve with diamonds (green) presents
RMSE for the noisy phase of the observations. These RMSE
values close to 1 correspond to a very noisy case with a
hardly distinguishable phase of the object. The curve with
squares (black) is RMSE for BM3D filtering, its’ values are
close to 1 also, which means that the separate phase/amplitude
BM3D filtering is not effective for such complex data. The
curve with triangles (blue) is for the CDBM3D algorithm. It
demonstrates a significant improvement of filtering in compar-
ison with BM3D, but nevertheless, it lost some details of the
object image.

The curve with circles (red) is for the CCF algorithm with
RMSE values about 0.1 corresponding to a very good noise
suppression and an appropriate revealing of the object details.
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Fig. 4. RMSE values for different values of the noise standard deviation and
SNR for observations.

An inclination of the RMSE curves for BM3D and
CDBM3D to smaller values for larger wavelengths λ in Fig. 3
is explained as a better filtering for the data slices with
smaller ranges of the absolute phases, which corresponds to
flatter surfaces of the corresponding wrapped phases. Such
inclination is not observed for the CCF algorithm since CCF
takes into account all slices of HS cube and filtering quality
is limited by the whole HS cube Z(x, y,Λ) but not separate
slices Z(x, y, λ).

FastHyDe, magenta curve with stars, demonstrates perfor-
mance which is much better than that shown by BM3D and
CDBM3D because this algorithm process all data of the cube
simultaneously but being applied to the phase data present the
much lower accuracy than CCF .

Fig. 4 is a double Y-axis graph, where the left Y-axis is for
RMSE and the right Y-axis is for signal-to-noise ratio (SNR)
calculated for noisy phase data, λ = 598 nm. Naturally, all
RMSE curves are growing functions of σ. RMSE for CCF
(blue circles) take smallest values, what confirms the best
performance of the proposed algorithm versus BM3D and
CDBM3D, and reliable CCF results are obtained even for
extremely noisy data, SNR ≈ 2, with RMSE = 0.11.

For our simulation experiments, we use MATLAB R2017b
and the computer with the processor Intel(R) Core(TM) i7-
3770 CPU @ 3.40 GHz, 32 Gb RAM. The computation
complexity of the algorithm is characterized by the time
required for processing. For 64 × 64 × 200 HS cube, it is
equal to 12 sec.

V. CONCLUSION

In this paper, we present the algorithm for denoising of 3D
HS complex-valued data cube. In simulation experiments, the
algorithm demonstrates the state-of-the-art performance visu-
ally and numerically owing to the SVD analysis of noisy HS
observations and CDBM3D filtering in the SVD eigenspace.
The outstanding noise suppression and object detail preserva-
tion are due to joint processing of 2D slices of 3D HS data.
Such good results cannot be achieved by separate denoising
of 2D slices of HS observations even using the high-accuracy
BM3D and CDBM3D algorithms or by joint processing of
real-valued slices, as it shown in this paper for the phase cube

filtering by the FastHyDe algorithm. The proposed algorithm
is efficient and stable even for low SNR observations.

The MATLAB demo-codes of the proposed
algorithm will be publicly available on the website:
http://www.cs.tut.fi/sgn/imaging/sparse/.
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