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ABSTRACT

Big Data comprise the tools to analyse vast stores of data
generated by the myriad of powerful, low-cost processors,
sensors and networks around us. The spiralling demand for
multi-sensored personal communication devices has played
a major role in this, producing images and leaving digital
trails of transactions and texts to be mined for patterns. 
Consequently, the cutting edge of data analysis tools has been
targeted for images. However the copious amounts of data
required to successfully train these tools are not available in
several fields such as rehabilitation where there are
constraints on data collection. And yet the need for timely
clinical assessments grows.

We consider how to address this situation by  generating
synthetic, surrogate data which preserves many properties of
the original. Here we introduce a new application of surrogate
time series in a novel classification scheme, compare methods
of converting these into images and use a state of the art
neural network framework for a successful improvement in
classification results.

This is a significant contribution to the art, demonstrating
how scarce time series data can be successfully augmented to
take advantage of cutting edge analytical tools.

Index terms - Deep learning, rehabilitation, accelerometer,
surrogate data, time series.

1. INTRODUCTION

The progress of deep learning as a powerful tool in
artificial intelligence has been exceptional. Automated tasks
such as image recognition and speech transcription achieved 
super-human results and surpass humans at several board
games. The advanced machine learning algorithms used hold
the promise of such superhuman performance in many other
fields. A confluence of factors is at play here. These involve
the demand for personal communication devices, with their
image and motion sensors and the underlying electronic
networks with which to communicate. These have led to the
ubiquity of social networks which facilitate widespread
sharing of data using the Internet as a backbone technology.
Together with other devices like fitness trackers these have
driven down the costs and sizes of sensors and processors.

At another end of the computing spectrum, the demand
for realistic gaming scenarios has seen the development of
massively parallel graphics processing units (GPU).These
bring specialized image processing hardware at consumer
prices. 

Thus, huge amounts of data - principally images, text and
speech, are being generated constantly. The value in these
data would have gone undiscovered if not for the processing
power of GPUs which are harnessed to analyse the data.

The analytic technology we use is based on neural
networks (NN) which were formulated in the 1960's, reached
a peak in popularity in the 1980's plateaued and is once more
athe forefront of artificial intelligence. The technology then
could handle only shallow neural networks, with one hidden
layer. These have evolved into the deep learning networks of
today with multiple hidden layers and various schemes of
neuron connection which require copious amounts of data for
training. As it is, these large datasets have come about through
the proliferation of social and communication networks. The
high computation power in the GPUs have allowed reasonable
times to analyse these data. Although network architectures
have abounded, the cutting edge is in the area of classifying
image data where the Convolutional Neural Network (CNN)
is especially effective. A benefit of using existing networks is
that parameters learnt can be passed on through transfer
learning, using only a fraction of the training resources to
learn and classify similar data.

Thus to take advantage of these advances, it behooves us
to transform our data into images. This is a familiar concept
as many often, we can see patterns in a graph more easily than
a mathematical description. There have been several
approaches to transform one dimensional (1D) time series
data into images which we will discuss in Sec. 2.

However unlike the huge caches of image data being
shared online, this is not always the case for other fields. For
example, there are concerns due to privacy, difficulty in data
collection, especially in the biomedical field. One way around
this is to generate synthetic data. Monte Carlo simulations and
statistics laid the foundations for principled generation of such
data.

Our work is based on the widely used [1] Action Research
Arm Test (ARAT). It is a test of performance designed to
measure the recovery of upper limb function subsequent to
injury to the cerebral cortex. The ARAT can be used to
evaluate treatment outcomes as well as monitor its progress.
Furthermore it can be conducted quickly and is also
dependable.

Our setup involves implanting sensors into the objects
used in rehabilitation for a less intrusive procedure and a more
standardized setup.

In Section 2 we describe the motivation for our approach
as well as the background material. Section 3 outlines our
physical setup followed by the signal analysis theory in
Section 4. Our experimental results are presented in Section
5 and we summarize our discussion with conclusions in
Section 6.

2. BACKGROUND WORK

In this section we outline the motivation for our work
which aims to take advantage of the advances in machine
learning for rehabilitative assessments.
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Synthetic Surrogate Data
In training NNs, there has always been the need for large
data. However, wide scale data gathering is not always
practicable for reasons of privacy, expense, time among many
factors. To overcome some of these limitations, Rubin [2]
first proposed to generate synthetic data that have common
characteristics with the original data. This can be realised in
a parametric way, for example by using a random number
generator and ensuring the numbers have the same mean and
variance as the original data. Such an example is that of
Synthpop [3] which uses regression and decision trees to do
so. However generating synthetic time-series data is more
involved as it requires fidelity to the temporal sequence of
data.

Using specialized NNs such as Generative Adversarial
Networks for generating data are still in research. However
surrogate time series data have been successfully used for
some time now. Lancaster et. al [4] have recently conducted
an extensive review of methods to generate them. Surrogate
data is a type of synthetic data that uses bootstrapping,
resampling from the original data with replacement. It would
be simple to just shuffle the time series data randomly and
preserve the mean and variance. But to preserve the temporal
correlation and power spectra requires a more nuanced
approach which Theiler et al. [5] implemented as the
Amplitude Adjusted Fourier Transform (AAFT). An
improved version, the Iterated AAFT (IAAFT) was proposed
by Schreiber and Schmitz [6].

Feature transformation
The CNN has been designed to specifically take advantage of
fundamental image features like edges and lines. The many
layers of filters at the input detect these features while the
deeper layers of the network. There have been much in the
literature about transforming 1D data into 2D images to take
advantage of the advances in CNN like that of [7] which
considers biomedical signals. We look at three methods that
have been widely used.

In the work by Tsai et al., [8] they use line graphs as the
image input to a NN. This is a time domain approach which
does not require much data processing.

Zhang and Oates [9] proposed the idea of Gramian
Angular Fields (GAF). They note that the polar graph of time
series data can better preserve and display the temporal
correlation between time points. These can be considered as
a kind of polar based autocorrelation plot which again is a
time domain approach.

Analysing a time series using basis functions can yield
different insights. For example Fourier based analyses can
highlight the frequencies of interest. For signals which have
large frequency content changes, the short time Fourier
transform (STFT) can represent changes in frequency with
time.  The wavelet transform is a generalisation of this idea.
A basis function called a wavelet, is shifted and scaled and
compared to the time series. The continuous wavelet
transform (CWT) or the discrete version can be used. These
differ in how the scaling parameters are generated. 

2.1      Convolutional Neural Networks

The work by Krizhevsky et al.[10] have set the framework for
today’s deep learning architectures. These use CNNs trained
with the help of GPUs. The network they developed is known
as AlexNet and it reduced the error rate from 26% to 15.3%
in the ImageNet Large Scale Visual Recognition Challenge in
2012 which featured 15 million images in 1000 categories.
Although this performance has been bettered, the architecture
of the NN used has not changed much.

A benefit of using existing networks is the use of transfer
learning. Large networks and large amounts of data still take
a long time to train from the beginning. Through transfer
learning, it is possible to use a fraction of these resources if
the new application data is similar to that used for training the
existing network, by just modifying a few parameters.
Furthermore AlexNet has been extensively studied applied
and adapted, so there is confidence in the results it produces.

2.2      Instrumenting Rehabilitation Assessments

The conduct of rehabilitation needs to have a protocol for
their administration to ensure repeatable, quantitative and
objective measurements. Presently the prevalence of these
tests are scored visually, which interposes a degree of
subjectivity and does not allow subtle motions to be noticed.
Besides, the unvarying nature of these assessment activities
bring on inattentiveness and human errors. All these motivate
for automated test monitoring by electronic means, by
instrumenting the objects used in these tests.

Yozbatiran et al. [11] regulated the ARAT by specifying
the object sizes used as well as the dimensions of the
supporting furniture. In addition, they also specified the
scoring in terms of the timing and quality of the movements,
but these were based on visual observations.

In [12], Lee et al. reported on work done with the
instrumented device outlined in this paper, deploying healthy
patient simulators. For the sake of continuity in discussion,
parts of their paper have been used here.

As mentioned earlier in this section, the wide availability
of sensorized consumer devices have lowered the cost of
sensors such as gyroscopes and accelerometers built into
them. This is true of devices like smart watches, fitness
trackers and gaming devices. 

In our work, we insert sensors into objects used in
rehabilitation as they can sense fine motion and there is no
need for a bodily intrusive sensor attachment procedure. Data
can be easily captured online as well.

The overall process flow for our proposed system is
shown in Fig. 1. Accelerometer motion data captured in a
session are manually segmented from sessions into trials.
Then outliers due to noise are compensated for. The time
series data are then used to generate two types of surrogate
data, extending the data by 10 then 100 times to compare the
results of greater data augmentation. These are transformed
into three types of images and finally input into a Deep
Convolutional Neural Network.

We describe our setup in the next section.

3. EXPERIMENTAL SETUP

We outline how Test4 of the ARAT Grasp Subtest is

Fig. 1. Processing flow of our rehabilitative time-series data.

2019 27th European Signal Processing Conference (EUSIPCO)



conducted. This test requires grasping a cube (wooden)
measuring 7.5 cm all around. This object which we will term
the Cube, is transported from a given point directly to another
point. The main sensor of interest is a triaxial accelerometer
used to measure motion. The sensor readings are sampled at
30 times per second so that a maximum frequency of 15 Hz
can be recorded reliably. Pre-filtering is not done to prevent
removing important information and all processing is done in
the Matlab® environment.

3.1     ARAT scoring and test subjects

In Fig. 2 we see how the Cube is gripped, held vertically and
moved. The ARAT scoring uses a four point scale, from 3 for
satisfactory completion to 0 which is non-completion. A score
of 3 indicates completion of the task within 5 seconds with
appropriate hand, arm and posture movements detailed in
[11].

A score of 2 is given when the subject completes the task
“with great difficulty and/or takes abnormally long time”,
from 5 to 60 seconds.

For a score of 1 which indicates partial completion, the
timing would be greater than 60 seconds. Also being able to
just grasp, hold and lift the Cube would be sufficient to
warrant this score.

However a score of 0 indicates any of the following: i) 
inability to perform any part of the task within 60 seconds. ii)
inability to grasp the Cube within the time period. iii) subject
does not use the fingers to grasp the Cube or use another hand
or mechanical support to manipulate the Cube. In all, 34
patients who have had a history of stroke and undergone
rehabilitation participated in the trial. This was conducted in
a hospital over a period of 60 days. Each patient would
perform a set of ARAT motions in one session, up to three
times if possible. Each session will have the data is recorded
continuously and then segmented manually into its
component trials. A significant point to note is that the score
is awarded on a session basis which implies some kind of
averaging is done over the trials. Besides, the sessions were
recorded over a period of time and different therapists
performed the scoring so some variability is induced in the
scores. 

From these subjects, 78 trials were recorded. Of these, 31
were scored at 3, 38 scored at 2, 6 scored at 1 and 3 scored at
0, so that there is considerable statistical bias in results. This
skew in sample size is probably due to the fitter patients being
able to come for trial.

Surrogate data generation
We are not able to determine a priori the numbers of patients
in each class. It is reasonable to assume equal numbers for a
uniform statistical analysis to reduce statistical bias. Thus we 

generate surrogate data so that each class has roughly the
same number of data as shown in Table 1.

Table 1 Table of data set generation. Original then number of
surrogates

          Data type 
 Score

Original Surrogate×10 Surrogate×100

3 31 310 3100

2 38 380 3800

1 6 360 3600

0 3 360 3600

Total sets 78 1410 14100

4. METHODOLOGY

The theory for surrogate data generation will be described
in this section. Then we briefly consider the theory behind
some of the 1D to image transforms. Finally we consider
structure of the CNN and parameters used. In this section, the
time series is represented as a vector x = {x1, x2 ...xN} of N
samples in sequential, equally spaced time intervals.

4.1      Surrogate Data

Surrogate data were originally designed to test for the
presence of nonlinearity  in a time series. If the underlying
model for the time series is not discernible, a nonparametric
test is needed. Tests using surrogate data are couched in
statistics where the null hypothesis is that the observed time
series results from a stochastic, stationary linear process with
random inputs. The surrogate data would maintain the
stationary properties of the original time series like the mean;
in preserving the variance and autocorrelations, this would be
reflected in the power spectrum as well. A statistic is
computed based on linear considerations in the original data.
In computing the same statistic in the surrogates, if there is
more variation in values that can be explained by normal
variance, then the hypothesis is rejected, so that there are
possibly nonlinear processes generating the data.

However the measurement of the data can introduce
nonlinearities and if this is monotonic, this effect can be
accounted for. Here we describe the steps, assuming a SORT
operator which outputs the sorted data and the indices.

i) [{si} {ixo}] = SORT({xi}) ; {si} and {ixo} are the sorted
data and the corresponding index in {xi} respectively.
{irxo} = SORT({ixo}) ; {irxo} is the rank order of the data,
so that {sirxo} = {xi}.

ii) {ri} 0 U(0,1) where U (0,1) is the uniform distribution
generator on the interval [0..1] and {ri} 0 ú.
{pi} = SORT({ri}) ; {pi} are temporary variables.
{yi} =  {p(irxo)} ; {yi} are random numbers that have the
same size distribution as {xi}.

iii) {Y(ù)} = ö({yi}) ; {Y(ù)} :  Fourier Transform ö of {yi}
iv) {Y ’(ù)} = {Y(ù)ejö} ; where the phase ö 0 U[0,2ð). Y’(ù) 

is the phase randomized version of Y(ù).
v) {y’i)} = ö-1({Y ’(ù)}) ; {y’i} is the time domain version

of {Y ’(ù)} using ö-1. 
vi) The input needs to be rank ordered according to the

output now:
{iyo} = SORT ({y’i}) ; {iyo} is the index of the sorted data 
{iryo} = SORT (iyo) ;  iryo is the rank order of {y’(t)}.
{x*i} = {siryo} ; {x*i} is the surrogate.

The steps comprising the randomized amplitude generation

Fig. 2. ARAT Cube orientation with observer in background.
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(1)

Fig. 4. AlexNet CNN architecture taken from [10].

comprise the AAFT. But this process causes the
autocorrelations between the original and surrogates to
change. The IAAFT will iterate the surrogate process until
there is a close match in the autocorrelations. We illustrate
this process with a familiar example of a single cycle sine
wave digitized over 12 points.

4.2      Gramian Angular Field

As mentioned in Sec. 2, the motivation for the GAF is the
observation that the temporal relations between points are
better preserved in a polar plot. The time series data x are
scaled to q whose values fall in the interval [!1, +1].

They are then converted to polar coordinates with the
phase ö and radius r as:

öi = cos!1 qi where !1# qi # 1 for q 0 q

ri = i / N where i 0 {1...N}

The Gramian Summation Angular Field defines a matrix,
where the ith, jth element is given by:

cos(öi + öj) = cos(öi) cos(öi) ! sin(öi) sin(öi)  i,j 0 {1...N}

= qiqj + /(1 !q2
i)  /(1 !q2

j)

4.3      Continuous Wavelet Transform Scalogram

A wavelet transform uses a mother wavelet function ø which
has local support. From this function, scaled and translated
versions are produced - to be convolved with a signal or time
series. The resulting wavelets can be expressed as: 

1/2j/í ø ((i ! m)/2j/í)

where i is the sample number, í is the number of voices per
octave, m is the translation parameter. The CWT allows for
finer generation of values for the scale 1/2j/í and is shift-
invariant. Here we use the Morse wavelet which has good
time or frequency localized characteristics. It is also analytic,
being able to provide instantaneous amplitude, phase and
frequency information as well as discussed in [13].

4.4      Convolutional Neural Network

In Fig. 4 we show the overall architecture of AlexNet. It has
eight layers, required its input images to be 227 by 227 pixels
and was originally trained on 1000 image classes. 

Here it is only required to train on 4 classes by which was
done by modifying layer 8 only, which is a benefit of transfer
learning. We used stochastic descent updates, 20 epochs and
a mini-batch size of 64 and an initial learn rate of 0.001. 

The original dataset of 78 time series were augmented
with 1410 and 14100 sets of surrogate data as described in

Table 1. The datasets were combined together and used . We
used hold out validation with 80% of the data sets for training
and 20% testing chosen randomly and averaged the results for
three runs. 

The training and classifying was done on a Dell XPS 13 (3.4
Ghz capable) with 16 GB RAM using Windows 10.

5. INITIAL ANALYSIS AND RESULTS

In this section we present some initial results of our 1D to
2D image transformations involving surrogate data and the
classification results

5.1      Surrogate Time Series Data

The plot of a typical move together with its AAFT and IAAFT
surrogates are shown in Fig. 5.

5.2      Transformation to Image Features

In this section we show some of the images that result from
the transformation of time series into images.

Line graphs
These are the simplest images to generate, being just 1D plots
of data against time. Examples of these can be seen in Fig. 5.

Gramian Angular Fields
A typical GAF plot is shown in Fig. 6. This is actually a
Gramian Summation Angular Field as described in (1). 

Due to the nature of the outer product, the evolution of the

Fig. 6. Gramian Angular Field - left is the polar plot of the
time series, right is the Gramian Summation Angular Field.

Fig. 5. Plots of original time series (left) followed by AAFT surrogate (center)
 and IAAFT (right).

Fig. 3. Illustration of surrogate data generation. Left is original data. Center is
randomly generated data which has same rank order as original and right is the
phase randomized version which is the surrogate.
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time series can be seen in the plot from right half of Fig. 6,
progressing from the top left to the bottom right. The diagonal
represents the actual time series, with its autocorrelations off-
diagonal.

Continuous Wavelet Transform
The plot of frequency to time (or sample number) is known as
a scalogram, shown in Fig. 7. The progression of the
frequencies of interest with respect to time are clearly shown.

5.3      Results

In our earlier work [14] we employed hand crafted features to
train a decision tree classifier which automatically assigned
the ARAT scores with 97.2% accuracy and 72.4% with 21
fold cross validation.

In classifying with AlexNet using parameters in Sec. 4.4,
we used hold out validation with 80% of the data sets for
training and 20% for testing. These were chosen randomly
and we averaged the results for three runs. The line graphs
show very promising results with the IAAFT and 10 times the
amount of surrogate data giving a very high classification rate
of 97.1% and with 100 times surrogates, 100%. Furthermore
they take up a relatively low amount of time to train.

6. DISCUSSION

In summary we attempted to classify the condition of a
subject based on their performance in a subtest from Test4 of
the ARAT using data from a triaxial accelerometer. By
generating surrogate time series data,  transforming them into
images and using a pre-trained CNN, we have achieved
excellent classification results. It should be noted from
Section 3.1 that we are attempting to materialize the basis of
what is an essentially subjective rating. This ARAT score is
awarded by different scorers over time and not normalized.
Based on the motion produced by one subtest, it would seem
possible to infer the underlying condition of a subject. This
augurs well as a means to assess and assist in the problems
associated with a global greying population.

From Table 3, we see that simple time domain images

give overall best results as compared to those with some
degree of preprocessing as in the GAF and CWT. That the
AAFT surrogates work so well show the importance in
preserving time domain statistics of the original time series
which are the mean and variance. In addition, the surrogates 
also need to preserve the 2nd order frequency domain measure
which is  the power spectrum. In matching the power spectra
more accurately, the IAAFT seems to give marginally
improved results. Thus we have shown the efficacy of using
transfer learning from a state of the art CNN to achieve
excellent classification results for automated rehabilitation.

Subsequent work would involve determining the amount
of surrogate data actually needed as well as other types of 1D
to image representations. It is also useful to explore other
neural network architectures with lower resource demands.
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Table 3 Results of classification accuracy with run times in brackets - 80/20 training/validation - averaged over 3 runs

Surrogate Data Type Line Graph Gramian AF Continuous WT

None Original data 60.7% (5 mins) 57.6% (5 mins) 46.5% (1 hr)

AAFT 10 × Surrogate 90.1% (16 mins) 86.7% (1 hr) 84.1% (2 hrs)

100 × Surrogate 100% (5 hrs) 98.9% (19 hrs) 98.5% (12 hrs)

IAAFT 10 × Surrogate 97.1% (25 mins) 86.8% (1.5 hrs) 82.2% (1.5 hrs)

100 × Surrogate 99.9% (5 hrs) 99.1% (18 hrs) 98.5% (11 hrs)

Fig. 7. Scalogram of a typical time-series using a Morse wavelet. Left
y-axis shows normalized frequency, right axis - colour map.
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