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Abstract—The fast iterative shrinkage-thresholding algorithm
(FISTA) is a widely used procedure for minimizing the sum of
two convex functions, such that one has a L-Lipschitz continuous
gradient and the other is possible nonsmooth.

While FISTA’s theoretical rate of convergence (RoC) is pro-
portional to 1

αkt
2
k

, and it is related to (i) its extragradient rule /
inertial sequence, which depends on sequence tk, and (ii) the step-
size αk, which estimates L, its worst-case complexity results in
O(k−2) since, originally, (i) by construction tk ≥ k+1

2
, and (ii) the

condition αk ≥ αk+1 was imposed. Attempts to improve FISTA’s
RoC include alternative inertial sequences, and intertwining the
selection of the inertial sequence and the step-size.

In this paper, we show that if a bounded and non-decreasing
step-size sequence (αk ≤ αk+1, decoupled from the inertial se-
quence) can be generated via some adaptive scheme, then FISTA
can achieve a RoC proportional to k−3 for the indexes where
the step-size exhibits an approximate linear growth, with the
default O(k−2) behavior when the step-size’s bound is reached.
Furthermore, such exceptional step-size sequence can be easily
generated, and it indeed boots FISTA’s practical performance.

Index Terms—FISTA, step-size, convolutional sparse represen-
tations.

I. INTRODUCTION

The optimization of

min
x∈RN

F (x) := f(x) + g(x), (1)

where f, g : RN 7→ R are both convex functions, gradient ∇f
is L-Lipschitz continuous: ‖∇f(x) − ∇f(y)‖2 ≤ L(f)‖x −
y‖2, and g’s proximal operator,

prox
g

(y) = arg min
x

1

2
‖x− y‖+ g(x), (2)

has a computationally simple or affordable solution even if
g(·) is nonsmooth, has several applications in inverse problems
related to signal/image processing and machine learning.

There exists several numerical algorithms1 to minimize (1),
being FISTA [5] a widely used choice (specially if g(x) =
λ · ‖x‖1), due to its simplicity and theoretical O(k−2) rate of
convergence. In general, FISTA generates the iterates

xk = prox
g

(yk − αk∇f(yk)) (3)

yk = xk + γk(xk − xk−1) (4)

1E.g. Douglas-Rachford splitting [1], forward-backward splitting [2],
ADMM [3], etc. Also, (1) is generally referred to as the composite un-
constrained convex programming problem; see [4, Section 5.2] for several
variants, which also include FISTA.

for k ≥ 1, where αk ∈ [0, 1
L ] is the step-size and γk, the

inertial sequence, satisfies

γk =
tk − 1

tk+1
, t2k+1−tk+1 ≤ t2k ∀k ≥ 1. (5a,5b)

While FISTA’s theoretical O(k−2) rate of convergence
(RoC) is related to the extragradient rule2 and proper choice
of the inertial sequence (see Section II-B), the selection of the
step-size αk i.e. the estimation of L, the Lipschitz constant,
also impacts FISTA’s practical performance.

To illustrate the above statement we set F (x) as (23), i.e.
the convolutional sparse coding problem (CSC; among many
others, see [6], [7]), and solve it with the FISTA algorithm
considering six different methods3 to adaptively select the
step-size αk: (i) “Cauchy (std.)”, (ii) “Cauchy w/supp” and
(iii) “Cauchy (mod.)” represent three variants of the Cauchy
step-size [8] (described in Section II-A3); (iv) “BB-v1” and
(v) “BB-v2” represent two variants of the well-known Barzilai-
Borwein step-size [9] (see also Section II-A2); and (vi) “pro-
posed” which represents the case when the step-size sequence
is bounded and non-decreasing.
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Fig. 1: Evolution of cost function (23) in logarithmic scale (a)
and corresponding step-size sequence (b) for different adaptive
schemes for selecting FISTA’s step-size3.

For the above mentioned choices of the step-size αk, in Fig.
1a and 1b we depict the evolution of the cost function (23), in
logarithmic scale, and corresponding step-size’s values versus
iteration respectively. This example highlights the impact of
sequence {αk} over FISTA’s RoC; moreover, we hypothesize

2∇f is evaluated at a linear combination of the past two iterates, see (3).
3For this experiment, for all cases, we use the original inertial sequence

(8a) proposed in [5] and an independent selection of the step-size αk; further
details are given Section IV-B.
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that a bounded and non-decreasing sequence with a large limit
value implies (i) a faster convergence and (ii) a reduction of
the local oscillatory behavior of FISTA (originally observed
in [10]; see also [11] for a formal description).

Furthermore, as proven in Section III, if we assume that
{αk} exhibits an approximate linear growth ∀k ∈ [1, κ], then
FISTA achieves a RoC proportional to k−3 for such interval,
as summarized in (21). Finally, in Section IV, we show,
via computational experiments, that all the above mentioned
properties of {αk} can be met by underestimating a local
approximation of the Lipschitz constant (see (24a)), which is
dependent on the current solution’s support.

II. PREVIOUS RELATED WORK

A. Step-sizes for the Gradient method

On what follows, based on [12], we succinctly described
some alternatives (for a full list, see [12]) on how to select
the step-size for the Gradient method, where problem (1) is
simplify by taking g(x) = 0, and the next iterate is defined
by xk = xk − αkgk, where gk = ∇F (xk).

1) Exact/inexact line search: The exact line search defines
αk = arg minα F (xk − αgk), whereas for the inexact case
αk can be computed by some line search conditions, such as
Goldstein, Wolfe or Armijo conditions (see [13]).

However, usually (see for instance [14]), a simple line
search scheme undermines FISTA’s performance.

2) Barzilai-Borwein method: [9] proposed to use the infor-
mation in the previous iteration to estimate αk.

Considering zk = xk − xk−1 and qk = ∇F (xk) −
∇F (xk−1), [9] proposed two variants, henceforth labeled BB-
v1 (6a) and BB-v2 (6a), where 〈·, ·〉 represents inner product,
which can be shown to exhibit R-superlinear convergence for
the Gradient method; it has also been evaluated [15, Section
3.B] in the context of compressed sensing.

αk =
〈zk,qk〉
‖qk‖22

, αk =
‖zk‖22
〈zk,qk〉

. (6a,6b)

3) Cauchy step and variants: While it is well-known that
the standard Cauchy step (7a) can be inefficient (i.e. produces a
slow convergence, as can be observed in the particular example
associated with Fig. 1) and that it is always too long [12,
Section 3], we emphasize that there are successful variants:
(i) in the context of sparse representations [16] proposed
to use (7b), where sk = I[|xk|>0], I[COND] represents the
Indicator function4 and � represents element-wise product, (ii)
in the context of convex quadratic optimization, [8] proposed
(7c) and proved5 that it asymptotically converges to (7a).
Henceforth, (7a), (7b) and (7c) are labeled “Cauchy (std.)”,
“Cauchy w/supp” and “Cauchy (mod.)” respectively.

αk =
‖gk‖22
‖Φgk‖22

, αk =
‖sk � gk‖22
‖Φ(sk � gk)‖22

, α2
k =

‖gk‖22
‖ΦTΦgk‖22

.

(7a,7b,7c)

4Equal to 1 if “COND” is true, 0 otherwise
5[8] also noticed that BB-v2 or (6b) is the Cauchy step evaluated at the

previous iteration k-1.

B. Inertial sequences for FISTA
Simple choices for the inertial sequence {γk}, considering

t1 = 1, can be generated using (8)6: Originally, [5] proposed to
use (8a)7, while more recently, among others, [20], [21], [22]
used (8b) for several values of b ≥ 2 (being b = 2 common
practice). Furthermore, [23] proposed a generalization of (8b),
resulting in (8c), with b = 2 and a ∈ [50, 80] as default values.

tk =
1 +

√
1 + 4 ∗ t2k−1

2
, tk =

k − 1 + b

b
, b ≥ 2,

tk =
k − 1 + a

b
, b ≥ 2, a ≥ b−1. (8a,8b,8c)

C. Inertial sequence and step-size: Intertwined selection
As mentioned in Section I, FISTA is one particular variant

among several accelerated methods (see [4, Section 5.2]) to
solve problem (1), all with nearly identical theoretical RoC,
proportional to 1

αkt2k
, where αk and tk are related to the step-

size and inertial sequences.
[24] noticed that a simple backtracking / line search will

cause the above mentioned error bound to rise unnecessarily,
and proposed to adapt both αk and tk accordingly. Further-
more [25, Proposition 1] proved that FISTA’s convergence is
preserved if

αkt
2
k ≥ αk+1tk+1(tk+1 − 1). (9)

Several works have exploited (9) or variants. To further
improve FISTA’s performance [4, Section 5.3] also proposed
to increase αk “when conditions permit”; several numerical
examples in [4] provided computational evidence for the effec-
tiveness of such approach. More recently, [26] also intertwined
the selection αk and tk, via the BB-v1 (6a) step-size along
with a line search, as to adaptively choose a step-size as large
as possible. By considering the general case of the Forward-
Backward splitting method, [11, Theorem 2.3] proved and
exploited an alternative relationship for αk and tk. Based on a
generalization of (9), [27] proposed a new FISTA-like method
along with a robust step size search.

III. ACHIEVING A RATE OF CONVERGENCE PROPORTIONAL
TO k−3 FOR SMALL/MEDIUM VALUES OF k

A. FISTA’s rate of convergence: key results
FISTA’s convergence analysis is thoroughly detailed in [5].

On what follows we highlight its key results, which will be
also used as a starting point for our new convergence analysis
(see Section III-B).

We start by reproducing FISTA’s approximation model [5,
Section 2.3] for F (x) (see (1)), summarized in (10)

Qα(x,y) =f(y) + 〈x−y,∇f(y)〉+ 1

2α
‖x−y‖22 + g(x). (10)

Clearly Qα(·) admits a unique minimizer given by pα(y) =
arg minxQα(x,y), which, can be expressed as

pα(y) = arg min
x

1

2α
‖x− (y − α∇f(y))‖22 + g(x). (11)

6Other choices [17], [18] include ad-hoc rules or many more parameters.
7Same as Nesterov’s acceleration scheme [19].
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As mentioned in [5, Section 2.4], one key results is needed
to prove FISTA’s convergence rate, namely Lemma 2.3, repro-
duced here8 as Lemma III.1.

Lemma III.1. Let y ∈RN , α> 0 s.t. F (x) ≤ Qα(x,y), then

F (x)− F (pα(y)) ≥ 1

2α
(‖x− pα(y)‖22 − ‖x− y‖22). (12)

By applying Lemma III.1 at the points x = xk, y = yk+1

and x = x∗, y = yk+1, along with α = αk+1 and
xk+1 = pαk+1

(yk+1), which is a consequence of (3), then
by adequately combining the resulting inequalities, (see proof
of Lemma 4.1 in [5]), we can get

2αk+1

(
τk+1vk − t2k+1vk+1

)
≥ ‖uk+1‖22 − ‖uk‖22, (13)

where tk is the sequence (see (5a) and (5b)) used to generate
the inertial sequence γk in (4), τk+1 = tk+1(tk+1 − 1), vk =
F (xk)− F (x∗) and uk = tkxk − (tk − 1)xk−1 − x∗.

From this point onward, in order to get the well-known
FISTA’s RoC, i.e. O(k−2), [5] used the fact that its cho-
sen inertial sequence satisfies equality in (5b), i.e. t2k =
tk+1(tk+1 − 1), and that by construction, it always chooses a
step-size s.t. 1

ςL(f) ≤ αk+1 ≤ αk, with ς ≥ 1. By combining
theses facts into (13), inequality (14) follows,

2αkt
2
kvk − 2αk+1t

2
k+1vk+1 ≥ ‖uk+1‖22 − ‖uk‖22, (14)

from which it is easy to check (15), since tk ≥ k+1
2 is a

consequence of using equality in (5b).

F (xk)− F (x∗) ≤ 2‖x0 − x∗‖22
αk(k + 1)2

≤ 2ςL(f)‖x0 − x∗‖22
(k + 1)2

. (15)

B. New convergence analysis
Our convergence analysis is motivated by the example

presented in Section I (further explained in Section IV-C),
which highlights the practical impact of the step-size sequence
{αk} over FISTA’s RoC. Furthermore, similar results have also
been observed when the selection of αk is intertwined the
inertial sequence (see Section II-C and references therein).

On what follows we start by assuming that the step-size
sequence {αk} is bounded and non-decreasing, i.e. αk+1 ≥
αk. Furthermore, in order to ease our analysis, we also assume
that for k ∈ [1, κ], the step-size sequence is linear, i.e. αk =
α0 + kµ, where α0 > 0 and µ > 0.

Our convergence analysis diverges from FISTA’s origi-
nal one from (13) onward: instead of considering t2k =
tk+1(tk+1 − 1), which results in (8a), we consider

t2k = dk + tk+1(tk+1 − 1) (16)

which is the case for either (8b) or (8c) for some dk > 0.
Furthermore, by assuming that k + 1 < κ, a simple algebraic
manipulation leads to (17).

Ck =
2

k

k∑
n=1

αn, αk+1 = Ck−α0 = Ck+1−α1. (17a, 17b)

8We note that there are small difference in notation w.r.t. [5]: we use α
instead of L, and for Lemma III.1 we use the Pythagoras relation ‖b−a‖22+
2〈b− a,a− c〉 = ‖b− c‖22 − ‖a− c‖22 to summarized (12).

By replacing (16) in (13) and adequately expressing αk+1

as a function of Ck or Ck+1 (see (17)), we get

2Ckt
2
kvk − 2Ck+1t

2
k+1vk+1 − βk ≥ ‖uk+1‖22 − ‖uk‖22, (18)

where βk = 2(αk+1dkvk + α0t
2
kvk − α1t

2
k+1vk+1).

If we now assume that ∀k ∈ [1, κ] (i) βk ≥ 0 or (ii) βk < 0
but it is small enough so it does not affect inequality (18), then

2Ckt
2
kvk − 2Ck+1t

2
k+1vk+1 ≥ ‖uk+1‖22 − ‖uk‖22, (19)

holds ∀k ∈ [1, κ]. By using the same arguments as in [5], then

F (xk)− F (x∗) ≤ ‖x0 − x∗‖22
2Ckt2k

∀k ∈ [1, κ], (20)

whereas for k > κ, the bound given by (15), with αk replaced
by the bound on the step-size sequence, will hold.

Finally, since it is trivial to show that Ck ≥ µ · (k+ 1) and
that for either (8b) or (8c) tk ≥ k+1

b holds, then

F (xk)− F (x∗) ≤ b2‖x0 − x∗‖22
2µ(k + 1)3

∀k ∈ [1, κ]. (21)

C. Motivation for a non-decreasing step-size sequence

In the context of the `0 regularized optimization (`0-RO)
problem, i.e. g(x) = λ‖x‖0 in (1): minx∈RN F (x) = ‖Ax−
b‖22+λ ·‖x‖0, where where A ∈ RM×N is called a dictionary
with N atoms, x ∈ RN , b ∈ RM and ‖x‖0 is the semi-
norm that counts the number of non-zero elements in x, it has
recently been proved [28, Lemma 1] that the `0-RO problem
is equivalent to (22),

min
z∈RL

FS(z) = fs(z) + g(z) = ‖ASz− b‖22 + λ · ‖z‖0, (22)

where AS ∈ RM×L, L < N , considers a properly chosen
reduced number of atoms.

The equivalence between the original `0-RO problem and
(22) also implies that the actual Lipschitz constant for its
quadratic term is L(fs) rather than L(f). Clearly the support
of x∗ is unknown in advanced; however, if an iterative
solution for the `0-RO problem complies with supp(xk+1) ⊆
supp(xk), ∀k ≥ 0 (this is one of the results of [28, Lemma
1]), then the Lipschitz constant varies when the support of the
current solution effectively shrinks.

To the best of our knowledge, there is no equivalent result to
[28, Lemma 1] when g(x) = λ‖x‖1. However, in the context
of an intertwined selection of the inertial sequence and step-
size (see Section II-C), some works (e.g. [26, Fig. 2a], [27,
Fig. 1b], etc.) have observed that a step-size sequence, with a
non-decreasing behavior for a limited interval is related to a
better performance in FISTA.

The bound summarized in (21) indeed implies that the
Lipschitz constant should change up to a given iteration to then
settle. In our experimental results we provide computational
evidence that such behavior can be exploited to attain (21).
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D. Implications of (21)

Several implications can be easily deduced from (21): (i) a
larger slope (µ) implies a faster convergence; (ii) for very small
values of k we expect a slower RoC w.r.t. the case when a con-
stant step-size (or backtracking) is used; (iii) if µ is too large,
at some point the assumption about the sign of βk or it being
“small enough” will break, and thus FISTA’s performance will
be undermined; (iv) (8b) / (8c) have better performance than
(8a) since for the formers t2k > tk+1(tk+1− 1) and thus, with
higher probability, assumptions about βk are true.

In Section IV, (see also Fig. 1 and 2), we provide compu-
tational evidence for the above mentioned implications.

IV. COMPUTATIONAL RESULTS

A. Experimental setup

Our experiments were carried out on an Intel i7-6820HK
(2.70 GHz, 8GB Cache, 64GB RAM) based laptop with
a nvidia GTX1070 (8GB memory) GPU card; our publicly
available GPU-enabled Matlab code [29] can be used to
reproduce our computational results.

Due to space constrains, we focus our experiments on
the convolutional sparse coding (CSC) problem (see Section
IV-B), where we consider five test images (“Lena”, “Barbara”,
“Kiel” and “Bridge”, each 512 × 512 pixel, and “Man”,
1024 × 1024 pixel). Other problems, such `0 regularized
optimization, Wavelet-based inpainting (noiseless) and and `0-
CSC can also be solved via our companion Matlab code [29].

B. Convolutional Sparse Coding (CSC)

Convolutional sparse representation (CSR) [30], [31] mod-
els an entire signal or image as a sum over a set of convolutions
of coefficient maps, of the same size as the signal or image,
with their corresponding dictionary filters. Given a set of
separable or non-separable9 dictionary filters, the most widely
used formulation of the convolutional sparse coding (CSC)
problem is Convolutional BPDN (CBPDN) [7], defined as

arg min
{uk}

1

2

∥∥∥∥∥
K∑
k=1

Hk ∗ uk − b

∥∥∥∥∥
2

2

+ λ
K∑
k=1

‖uk‖1, (23)

where {Hk} represents a set of K, L1 × L2 filters, {uk} is
the corresponding set of coefficient maps (each with N1 ×
N2 samples), b is the N1 × N2 input image, and λ is the
regularization parameter.

For the experiments presented below, we highlight that the
test images were not used in the dictionary learning stage,
and that b, in (23), is the original image corrupted with
uncorrelated additive Gaussian noise, i.e. b = b∗ + η.

C. Non-decreasing and bounded step-size sequence: Genera-
tion and assessment

In general, the Cauchy step-size is too long (see Section
II-A3). However, we have noticed that (7b) multiplied by a
small, manually selected constant10 0 < c ≤ 1, i.e (24a)

9In our experiments, we use a separable dictionary filter since they can
match [32], [33], [34], [35] the performance of non-separable filters.

αk = c
‖sk � gk‖22
‖Φ(sk � gk)‖22

, αk = c
〈zk,qk〉
‖qk‖22

, (24a, 24b)

where all other variables defined in Section II-A with Φu =∑K
k=1Hk ∗ uk, can indeed generate a bounded and non-

decreasing step-size sequence as shown in Fig. 1 (labeled
“proposed”) and in Fig. 2 where (23) is solved for a noisy
(σ2

η = 0.01) “Kiel” and “Barbara” respectively, for different
step-size’s choices, inertial sequences (I.Seq) and values of c
(for Fig. 1, c = 0.3; for Fig. 2, values are listed in its legend).
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Fig. 2: Evolution of cost function (23) in logarithmic scale (a)
and corresponding step-size sequence (b) for different I.Seq
and several alternatives values of c in (24a) and (24b).

Furthermore, as it was claimed in Section III-D, if the slope
of step-size sequence, in its linear region, is too large, then
the RoC will negatively suffer: this can be observed in Fig.
2 when I.Seq is generated by (8a) and the step-size via (24a)
with c = {0.5, 1.0} (cyan and black lines). When constant
c is correctly chosen (magenta, green and yellow lines), the
best RoC will be associated to the step-size sequence with the
largest slope; we also note that the RoC associated with the
I.Seq generated by (8c) is better (compare the magenta and
green lines) than that generated by (8a).

Finally we stress that other adaptive choices for αk, such
(24b) with c < 1, are counter-productive, as can be observed
for the red and blue lines in Fig. 2.

V. CONCLUSIONS

When FISTA is used to optimize a problem where its
solution is sparse, we have provided experimental evidence
showing that it is feasible to adaptively compute a bounded
and non-decreasing step-size sequence, i.e. αk ≤ αk+1, which
is dependent on the current solution’s support and is decoupled
from FISTA’s inertial sequence. Furthermore, if we assume
that {αk} exhibits an approximate linear growth ∀k ∈ [1, κ],
then we can prove that FISTA achieves a rate of convergence
proportional to k−3 for such interval, effectively boosting
FISTA’s performance when compare to the de-facto case where
αk ≥ αk+1 or for other educated choices of αk.

For the CSC problem, our experimental results shown that,
to attain the same cost functional value, the proposed selection
of αk can roughly reduce FISTA’s global number of iterations
by half when compared to other well-established choices.

10This modification was originally proposed in [36] for the standard Cauchy
step (7a) and was thoroughly analyzed in [37], along with other random
variants, in the context of the gradient descent method.
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