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Abstract—The scenario of a mixture of two speakers captured
by a microphone array in a noisy and reverberant environment is
considered. If the problems of source separation and dereverber-
ation are treated separately, performance degradation may result.
It is well-known that the performance of blind source separation
(BSS) algorithms degrades in the presence of reverberation,
unless reverberation effects are properly addressed (leading to the
so-called convolutive BSS algorithms). Similarly, the performance
of common dereverberation algorithms will severely degrade if
an interference signal is also captured by the same microphone
array. The aim of the proposed method is to jointly separate
and dereverberate the two speech sources, by extending the
Kalman expectation-maximization for dereverberation (KEMD)
algorithm, previously proposed by the authors. A statistical model
is attributed to this scenario, using the convolutive transfer
function (CTF) approximation, and the expectation-maximization
(EM) scheme is applied to obtain a maximum likelihood (ML)
estimate of the parameters. In the expectation step, the separated
clean signals are extracted from the observed data by the
application of a Kalman Filter, utilizing the parameters that
were estimated in the previous iteration. The maximization
step updates the parameters estimation according to the E-
step output. Simulation results shows that the proposed method
improves both the separation of the signals and their overall
quality.

Index Terms—Array processing, blind source separation, dere-
verberation, expectation-maximization, convolution in STFT

I. INTRODUCTION

Audio (blind) source separation is a family of algorithms
that aims at the extraction of a speech signal(s) from a mixture
of several sound sources [1], [2]. Such algorithms can be
deployed in many modern devices. e.g. hearing aids, hands-
free phones, and conference call systems. BSS is also required
as a preprocessing stage for automatic speech recognition
(ASR) systems, commonly used in modern smart assistants.

Sound sources recorded in real environments often in-
volve acoustic reverberation. While propagating in an acoustic
enclosure, the sound wave undergoes reflections from the
room facets and from various objects. These reflections are
detrimental to both speech quality and, in severe cases, its
intelligibility. Furthermore, reverberation increases the time
dependency between speech frames, rendering source sepa-
ration problems further challenging.

The BSS problem can be addressed from the perspective
of simultaneous estimation of acoustic parameters and clean
speech signals. Since neither the speech signals, nor the
acoustical parameters are known in advance, the EM algorithm
[3] can be applied and lead to a local ML estimate of the

parameters, as was proposed in e.g. [4]. Other EM algorithms
for BSS were proposed by using the nonnegative matrix
factorization (NMF) method [5], which is a very useful tool
in audio BSS applications.

In [6], an EM algorithm for both dereverberation and noise
reduction is presented. The room impulse response (RIR) is
modelled as an auto-regressive (AR) process in each frequency
band, and the EM algorithm is used to estimate both the clean
signal and the modelled system. The method was extended
in [7] to simultaneously dereverberate and separate multiple
speakers. Source separation based on CTF in the short-time
Fourier transform (STFT) domain is presented in [8], for
known mixing filters. For reverberated environment, an EM
method is proposed in [9] to jointly estimate the model
parameters, including the CTF coefficients of the mixing
filters, and infer the sources.

A Kalman expectation-maximization (KEM) scheme for
single-microphone speech enhancement in the time-domain
was presented in [10], and the KEM scheme was extended
in [11] for speech dereverberation in the STFT domain. In the
E-step, the Kalman smoother is applied to extract the clean
signal from the data, utilizing the estimated parameters. In
the M-step, the parameters are updated using the output of
the Kalman smoother. We refer to this algorithm as KEMD,
which was further extended to the recursive, segmental, and
binaural cases in [12]–[14], respectively.

In this paper, we propose the Kalman expectation-
maximization for dereverberation and separation (KEMDS)
algorithm, which is an extension of the KEMD to the case
of two speakers. In the E-step of the proposed algorithm, a
Kalman Filter is applied to jointly separate and dereverberate
the two speech sources. In the M-step, the CTFs of the two
speakers are updated.

II. STATISTICAL MODEL

In the following, we introduce a statistical model that
represents a scenario with two desired speakers, including both
reverberation and ambient noise. Extension to more than two
speakers is straightforward but cumbersome, and is out of the
scope of this paper.

Let x[n] and y[n] be the time-domain clean speech signals
of the first and second speakers. The signals are captured by
an array of J microphones, with the jth microphone signal
given by

zj [n] = x[n] ∗ hj [n] + y[n] ∗ gj [n] + vj [n] , (1)
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with hj [n] and gj [n] the RIRs between the first and second
speakers and the jth microphone, respectively, ∗ denotes
time-domain convolution, and vj [n] represents the respective
additive noise.

The problem is formulated in the STFT domain, where
x(t, k) and y(t, k) denote the STFT representation of x[n]
and y[n], respectively, with t ∈ {1, . . . , T} the time-frame
and k ∈ {1, . . . ,K} the frequency-bin. Assuming the source
signals are short-term stationary signals, and applying a proper
STFT analysis, x(t, k) and y(t, k) can be modelled as inde-
pendent complex-Gaussian random variables:

x(t, k) ∼ NC
{
0, σ2

x(t, k)
}
, y(t, k) ∼ NC

{
0, σ2

y(t, k)
}
,
(2)

where σ2
x(t, k) and σ2

y(t, k) denote the short-time power
spectrum of x[n] and y[n], respectively, and NC denotes a
proper complex-Gaussian distribution.

In the STFT domain, the RIRs can be approximately mod-
elled by a CTF model [15]; an approximation that was success-
fully applied for dereverberation [16] and beamforming [17].
Using the CTF model, (1) can be approximated by

zj(t, k) = hTj (k) · xt(k) + gTj (k) · yt(k) + vj(t, k), (3)

where the CTF systems are

hj(k) = [hj,L−1(k), . . . , hj,0(k)]
T
,

gj(k) = [gj,L−1(k), . . . , gj,0(k)]
T
,

(4)

and the state-vectors of the desired signals are

xt(k) = [x(t− L+ 1, k), . . . , x(t, k)]
T
,

yt(k) = [y(t− L+ 1, k), . . . , y(t, k)]
T

(5)

with L the CTF length that depends on the reverberation
time. We further assume that vj(t, k) are stationary complex-
Gaussian uncorrelated random processes, namely:

vj(t, k) ∼ NC
{
0, σ2

vj (k)
}

(6)

and E {vj(t, k)v∗i (t, k)} = 0 for j 6= i.

III. ALGORITHM DERIVATION

We now derive an EM-based algorithm for the joint pa-
rameter estimation. The desired signals will be inferred as a
byproduct.

A. Parameter Estimation Problem

Let Z be the set of all available measurements:

Z = {zj(t, k) : j = 1, . . . , J , t = 1, . . . , T , k = 1, . . . ,K} .

As often encountered in many statistical models, maximizing
the likelihood function f(Z;Θ) is intractable, and therefore
necessitates the application of the EM procedure. The set of
parameters comprises the following subsets:

Θ ≡ {ΘX ,ΘY ,ΘH ,ΘG,ΘV }
ΘX ≡

{
σ2
x(t, k)

}
t,k
, ΘY ≡

{
σ2
y(t, k)

}
t,k

ΘH ≡ {hj(k)}j,k , ΘG ≡ {gj(k)}j,k , ΘV ≡
{
σ2
vj (k)

}
j,k

(7)

for all j = 1, . . . , J , t = 1, . . . , T , and k = 1, . . . ,K. The
latent data in this problem is defined as the STFT coefficients
of the two clean speech signals:

X = {x(t, k) : t = 1, . . . , T , k = 1, . . . ,K}
Y = {y(t, k) : t = 1, . . . , T , k = 1, . . . ,K} . (8)

For conciseness, the frequency index k will be omitted in the
rest of the derivation.

In the E-step of the EM procedure, the auxiliary function
is first calculated:

Q
(
Θ
∣∣∣Θ̂(p−1))

≡ E
{
log f(Z,X ,Y;Θ)

∣∣∣Z; Θ̂(p−1)}
, (9)

where Θ̂
(p−1)

is the parameter estimate at iteration p. In the
M-step, the new parameter estimate Θ̂

(p)
is calculated by:

Θ̂
(p)

= argmax
Θ

Q
(
Θ
∣∣∣Θ̂(p−1))

. (10)

Under the statistical model presented in Sec. II, the complete-
data log-likelihood is given by

log f(X ,Y,Z;Θ) = C

− 1

2

T∑
t=1

[
log(σ2

x(t)σ
2
y(t)) +

|x(t)|2

σ2
x(t)

+
|y(t)|2

σ2
y(t)

]

− 1

2

T∑
t=1

J∑
j=1

[
log σ2

vj +
1

σ2
vj

T∑
t=1

∣∣zj(t)− hTj xt − gTj yt
∣∣2]

(11)

with C a constant, independent of Θ.
A few notes are in place. The term in the second line of

(11) is the log-likelihood of the clean speech signals, and
due to the independence between time frames, it can be
expressed as a summation over the time index t. The term
in the third line is the log-likelihood of the additive noise, and
due to the independence of noise signals across microphones it
decomposes to a sum over the J microphones. Calculating the
expected value of log f(X ,Y,Z;Θ) involves the computation
of the first- and second-order statistics of xt and yt, derived
in the next section.

B. E-Step: Kalman Filter

The Kalman smoother implements the conditional expecta-
tion in (9) in the Gaussian case for time-varying problems.
The application of the Kalman smoother necessitates forward-
backward recursions. Our preliminary examination showed
that avoiding the backward path results in only a marginal
performance degradation. We have therefore decided to only
apply the forward recursion, namely the Kalman filter, that is
extensively covered in the science and engineering literature.

The application of the Kalman filtering requires state-space
formulation, and therefore we concatenate the state-vectors in
(5) as:

µt = [xTt , yTt ]
T . (12)
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The dynamical model is given by a simple random walk:

µt = Φµt−1 + wt , Φ =

[
ΦX 0
0 ΦY

]
(13)

where ΦX and ΦY are identical L× L matrices

ΦX ≡ ΦY ≡



0 1 0 · · · 0
...

. . . . . .
...

. . . . . .
...

. . . 1
0 · · · · · · · · · 0


,

and the innovation process is given by

wt ≡ [0, . . . , x(t), 0, . . . , y(t)]
T
.

Note that multiplication by ΦX and ΦY corresponds to
time-shift of the state-vector µt−1, neglecting the correlation
between adjacent frames. The validity of this assumption
depends on the percentage of overlap between STFT frames,
as will be demonstrated in Sec. V. The observed signal is
given by:

zt = Qµt + vt , Q =
[
H G

]T
, (14)

where the observation matrices are

H ≡ [h1, . . . , hJ ]
T

, G ≡ [g1, . . . , gJ ]
T
,

with hj and gj defined in (4), and the measurement and noise
vectors are given by

zt ≡ [z1(t), . . . , zJ(t)]
T

, vt ≡ [v1(t), . . . , vJ(t)]
T
.

Finally, the second-order statistics of wt and vt is given by

Ft ≡ E
{
wtw

H
t

}
=



0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
... · · · σ2

x(t) 0 · · ·
...

... · · · 0 0 · · ·
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · σ2
y(t)


,

B ≡ E
{
vtv

H
t

}
=


σ2
v1 · · · · · · 0
0 σ2

v2

0
. . .

0 · · · · · · σ2
vJ

 ,
where (·)H indicates the Hermitian operator. The correspond-
ing Kalman filtering procedure is summarized in Algorithm 1.

The outcome of the Kalman filter is the state-vector estima-
tor, µ̂t|t and its respective error covariance matrix Pt|t. Let
Pt|t be partitioned as follows,

Pt|t =

[
[Pxx]t|t [Pxy]t|t

[Pxy]
H
t|t [Pyy]t|t

]
.

In the M-step below, the following first- and second-order
statistics terms, resulting from the application of the Kalman
filter, are used [10]:

µ̂t = E
{
µt

∣∣∣Z;Θ(p−1)
}
= µ̂t|t , (15a)

(( hh
µtµ

H
t = E

{
µtµ

H
t

∣∣∣Z;Θ(p−1)
}
= µ̂t|tµ̂

H
t|t + Pt|t . (15b)

C. M-Step: Parameter Estimation

The maximization of the auxiliary function (10) is obtained
by setting the partial derivatives with respect to the various
parameters to zero. The clean signals spectra at the pth
iteration are given by:

[
σ2
x(t)

](p)
=
(( hh
|x(t)|2,

[
σ2
y(t)

](p)
=
(( hh
|y(t)|2, (16)

where
(( hh
|x(t)|2 and

(( hh
|y(t)|2 can be obtained from the (L)-th

and (2L)-th diagonal elements of the second-order statistics
term in (15b), respectively. Note that these estimates are
simply given by the periodogram due to the assumption that
the speech frames are uncorrelated and Gaussian.

For the estimation of the CTF and noise parameters, we will
use the following time-averaged, second-order terms,

rzjzj ≡
1

T

T∑
t=1

|zj(t)|2 , r(p−1)µzj ≡ 1

T

T∑
t=1

µ̂tz
∗
j (t),

R(p−1)
µµ ≡ 1

T

T∑
t=1

(( hh
µtµ

H
t .

The vector of CTF coefficients for the jth microphone at the
pth iteration is given by:

qj
(p) ≡

[
hj
∗

gj
∗

](p)
=
[
R(p−1)
µµ

]−1
r(p−1)µzj , (17)

which is the least-squares (LS) fit between the estimated state-
vector and the measurement. The noise spectra coefficients are

Algorithm 1: The Kalman Filter.

for t = 1 to T do
Predict:
µ̂t|t−1 = Φ · µ̂t−1|t−1
Pt|t−1 = Φ ·Pt−1|t−1 ·ΦT + Ft
Update:
Kt = Pt|t−1Q

H
[
QPt|t−1Q

H + B
]−1

et = zt −Qµ̂t|t−1
µ̂t|t = µ̂t|t−1 + Kt · et
Pt|t = [I−KtQ]Pt|t−1

end
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the residual energy of this LS fit, given by

(σ2
vj )

(p) =
1

T

T∑
t=1

((((( hhhhh∣∣∣zj(t)− (qjT )(p) µt∣∣∣2= rzjzj−

2R
[(

qj
H
)(p)

r(p−1)µzj

]
+
(
qj
H
)(p)

R(p−1)
µµ qj

(p) . (18)

The proposed algorithm is dubbed KEMDS.

IV. INITIALIZATION OF THE EM ITERATIONS

The parameter initialization strategy is a crucial component
in any application of the EM algorithm, and it is important in
directing the EM to the desired local maximum. In the current
contribution, we do not assume any prior information on the
clean sources signals, their activity patterns, or their locations,
which makes the initialization task more challenging.

We propose to initialize the clean speech variances σ2
x(t, k)

and σ2
y(t, k) using the output of degenerate unmixing estima-

tion technique (DUET) method [18]. This method separates the
sources under the assumption that the sources are W-disjoint
orthogonal, that is, that the supports of the signals in the STFT
domain are disjoint sets. In the presence of reverberation,
the separation performance of the DUET algorithm is rather
limited. Nevertheless, we found that the DUET method can
provide a good initialization for the clean speech signals
variances.

An initial value of the acoustic systems of the two speakers,
namely H and G, should also be set. To this end, we further
utilize the DUET output, by applying a LS fit between its
outputs and the noisy reverberated mixed signal. The length L
of the CTFs should be set in accordance with the reverberation
time and the STFT parameters [19]. However, preliminary
examination showed that as L increases, the estimation er-
ror increases as well. Therefore, shorter filters length was
used, with the additional purpose of reduced computational
load. Furthermore, we have noticed that better convergence
is achieved if the initial estimate of the CTF coefficients
are forced to decay. This is obtained by multiplying the LS
estimate with an exponentially decaying series.

V. SIMULATION RESULTS

A. Setup

The KEMDS algorithm was evaluated using simulated mix-
tures of two concurrently active speakers in a reverberant envi-
ronment. Clean signals from the two genders were drawn from
the TIMIT database [20] and concatenated to form utterances
of length 8 sec, where the sampling rate was 16 kHz. To con-
struct the microphone signals, each sentence was convolved
with time-invariant RIRs downloaded from the open database
recorded at the acoustic lab at Bar-Ilan University [21]. The
reverberation level of the (6 × 6 × 2.4) m acoustic Lab can
be controlled by flipping 60 dedicated panels covering the lab
facets. The RIRs were captured by an eight-microphone linear
array with inter-distances of {3, 3, 3, 8, 3, 3, 3} cm. We have
selected room setup with reverberation time T60 = 610 ms
to also demonstrate the dereverberation effects. The speakers’

TABLE I
COMPARISON BETWEEN THE PROPOSED METHOD AND THE DUET

METHOD FOR T60 = 610 MS AND RSNR = 30 DB. THE INPUT SIR
VALUES OF THE Y- AND X-SPEAKERS WERE 1.43 AND -0.11 DB,

RESPECTIVELY.

Measure Speaker DUET KEMDS Improvement

SDR x -0.59 1.26 1.86
y -0.51 1.24 1.75

SIR x 4.2 5.24 1.04
y 2.38 6.41 1.03

SAR x 3.01 5.14 2.12
y 2.14 4.3 2.15

positions were arbitrarily selected from 13 different available
angles on a semi-circle with a radius of 2 m with a resolution
of 15◦. Finally, the reverberant signals were contaminated with
spatially white noise to obtain reverberated-signal to noise
ratio (RSNR) value of 20 or 30 dB.

The STFT analysis utilized a 32 ms Hamming window,
with 50% overlap between consecutive time-frames. Note that
higher percentage of overlap will result in a significant de-
pendency between adjacent frames. This renders the statistical
model of Sec. II inaccurate, and leads to performance degrada-
tion, as well as higher computational complexity. Considering
this overlap, the reverberation time, and the consideration
in Sec. IV, the CTF length L was set to 10 frames. The
exponential decay constant, which was used for the CTF
coefficients attenuation (see Sec. IV), was set to 0.2. Three
EM iterations were executed in all experiments.

B. Separation Results

For the evaluation of the signal separation task, we com-
pared the proposed method and the baseline DUET method,
which was also used for the initialization of the proposed
EM procedure. We computed three quality measures: signal to
distortion ratio (SDR), signal to interference ratio (SIR) and
signal to artifacts ratio (SAR) [22] for both methods and for
each speaker. The average results are summarized in Table I.
It can be seen that the proposed method improves the signal
quality and separation level for each speaker.

C. Dereverberation Results

The Dereverberation performance was evaluated using the
signal to reverberant ratio (SRR). An estimator for SRR is
derived from the power ratio between the early sound and the
reverberation tail. The SRR estimator for a tested speaker s[n]
is calculated by

SRR{s} = 10 log10

∑
n |s[n] ∗ aearly[n]|2∑
n |s[n] ∗ alate[n]|2

, (19)

where aearly and alate are the early and late reflections of the
corresponding RIR at both the input and output of the proposed
algorithm. A comparison between the SRR at the input and the
output of the KEMDS algorithm is given in Table II, where
it can be seen that the proposed algorithm increases the SRR
values, indicating reduced reverberation.
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TABLE II
SRR VALUES FOR KEMDS AT T60 = 610 MS AND RSNR = 30 DB

Speaker Input SRR Output SRR Improvement

x -4.02 -1.10 2.91
y -4.66 -1.63 3.02
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(a) Noisy reverberant mixture signal
on Mic. #1.
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(b) Clean signal (Speaker ‘x’.)
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(c) DUET output for speaker ‘x’.
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(d) KEMDS Output for speaker ‘x’.

Fig. 1. spectrograms for T60 = 610 ms and RSNR=20 dB.

D. Subjective Evaluation

The performance of the proposed algorithm was also tested
by the assessment of spectrograms and by informal listening
tests. spectrograms of the signal as received by the rightest
microphone, the clean signal of speaker ‘x’, the output signal
for signal ‘x’ of the DUET algorithm and of the proposed
algorithm, respectively, are depicted in Figure 1. The spectro-
grams for the second speaker exhibit similar trends and are
omitted due to space constraints. It is clearly depicted that the
proposed method outperforms the DUET algorithm in both
tasks.

Sound samples can be found in the lab website.1

VI. CONCLUSIONS

An EM-based algorithm for dual-speaker, multi-microphone
speech separation and dereverberation was presented, where
both the acoustic parameters and the enhanced signals are
estimated. An estimate of the separated, denoised, and dere-
verberated speech signal is obtained (as a byproduct of the
algorithm) at the E-step by applying the Kalman filter. The
iterative procedure converges in a low number of iterations.
The entire algorithm is applied in the STFT domain, en-
abling an efficient parallel implementation. Simulation results
show better performance compared to the DUET method,
with respect to both the signal quality and the separation
capabilities. A significant reduction of the reverberation level
is also demonstrated. These improvements are validated by
both objective measures and by the subjective assessment of
speech spectrograms and sound samples.

1www.eng.biu.ac.il/gannot/speech-enhancement/
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