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Abstract—The Shannon sampling theorem states the lowest
sampling rate for the lowpass bandlimited signals. But for
multiband bandlimited signals, it is inefficient to apply the
Shannon sampling theorem. This is because the existence of gaps
between successive bands makes it possible to realize sampling
at a rate, which is lower than the Nyquist rate and lower-
bounded by Nyquist-Landau rate. The Nyquist-Landau rate
for multiband signals, can be attained via periodic nonuniform
sampling. However, it is still very challenging to find the sampling
rate for multiband bandlimited signals such that the average
sampling rate approaches the Nyquist-Landau rate. In this paper,
we aim to find the feasible range of sub-Nyquist sampling rate
(such that uniform sampling at this rate causes no aliasing)
for two-band signals without aliasing. In this paper, an efficient
method to find the constraints on the sampling frequency of
two-band signals is devised. The normal placement and inverse
placement of the spectrum are considered. Guard bands are
considered to increase the robustness of the proposed sampling
scheme. Analytical study is provided to obtain the allowable
region of sampling frequencies. The derived low sampling rate
ensures a relaxed requirement in terms of sampling, processing,
and memory.

Index Terms—two-band, reconstruction, periodic nonuniform
sampling, sampling frequency range

I. INTRODUCTION

The Shannon sampling theorem addresses reconstructing a
lowpass bandlimited signal from its uniform samples. That
is, the Nyquist rate, defined to be twice the frequency of the
highest frequency component of the continuous-time signal, is
the lowest sampling rate that guarantees no spectral aliasing.
However, the Nyquist rate of the signal will span into the MHz
range if the fundamental frequencies of periodic radio signals
are into MHz range [1]. Most analog-to-digital converters
(ADCs) either cannot achieve sampling at this high rate or
are too expensive [1]. Thus, uniform sampling at the Nyquist
rate is not suitable to convert the analog signal to digital
domain for further processing. The gaps between consecutive
bands make it possible to sample at sub-Nyquist rate which
is at least the total bandwidth, namely, the Nyquist-Landau
rate [2]. Nevertheless it is difficult to accurately determine the
minimum uniform sampling rate of multiband signals with
arbitrary band edges [3].

Periodic nonuniform sampling (PNS) is used to obtain
a lower average rate [4], [5]. In [6], it has been reported
that when sampling the signal using PNS at a rate lower
than the Nyquist rate, the original signal can still be exactly

recovered. That is, reconstruction can be performed by pro-
cessing subsamples (obtained nonuniformly) of the original
sample sequence at the Nyquist rate [7], [8]. And the average
sampling rate can be asymptotically close to the Nyquist-
Landau rate when using PNS [6], [9]. The problem of choosing
the sampling rate in PNS scheme such that the total rate
approaches the Nyquist-Landau rate has not been thoroughly
understood however.

Herley and Wong [6] have presented an approach that
searches the uniform sampling rate to attain the Nyquist-
Landau rate of multiband signals. However, it has many prob-
lems in practical implementation such as high computational
complexity and possible nonexistence of solution. Our goal in
this paper is to design a method to find the range of uniform
sampling rate such that no aliasing will be caused at this
rate for two-band signals. In so doing, a PNS scheme can
be implemented with a sampling scheme that asymptotically
achieves the derived sampling rate.

The rest of the paper is organized as follows. PNS is
described in Section II. In Section III, we provide an efficient
method to find the feasible sampling frequency for normal
and inverse spectral placements. A simulation study for a
single two-band signal is included in Section IV to verify the
effectiveness of our method. Finally, conclusions are drawn in
Section V.

II. PERIODIC NONUNIFORM SAMPLING

PNS is applied to achieve minimal sampling rate that allows
the analog signal to be perfectly reconstructed from the corre-
sponding samples. Precisely, several lower-rate discrete signal
sequences instead of one high-rate discrete signal sequence are
employed in the PNS scheme to realize the reconstruction [10],
[11].

Fig. 1 shows the decomposition of one high-rate discrete-
time signal into M sampling sequences at rate f0. The original
signal x(t) is first sampled at a rate Mf0 which is no less
than the Nyquist rate. M high-rate sampling sequences are
delayed, and then passed through the combination of an M -
fold downsampler and an M -fold upsampler. Then, sampling
sequences are advanced to be M sampling sequences xi[n]
(n = 0, · · · ,M − 1).

A downsampler is an operator that retains only every M th
sample from a sequence, an upsampler inserts (M − 1)
zero samples between adjacent samples. The effect of the
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Fig. 1. Sample analog signal x(t) at rate Mf0 and split it into M signal
sequences each with rate f0.

combination of a downsampler followed by an upsampler is
that every M th sample is retained, while all others are set
to zero. Thus the implementation of this sampling strategy
is carried by M uniform sequences with sampling rate f0.
Evidently, the average sampling rate is still Mf0.

The PNS scheme is derived by deleting samples periodically
from some uniform sample sequences which means that the
samples obtained by PNS are not equally spaced in time.
Sampling process is implemented by multiplying the original
signal by a periodic uniform impulse sequence with the same
sampling period (reciprocal of the sampling rate f0 ) [12],
which is known as first-order sampling. The spectrum of the
sampled sequence consists of replicas of the original signal
spectrum shifted by integer times f0 [13]. More specifically,
the spectrum of the sampling signal and the sampling rate are
highly correlated. Assume x(t) is a dual-band signal and its
Fourier transform X(f) is shown in Fig. 2 (a). Let XS(f)
denote the sampled signal spectrum. When the maximum
frequency of the original signal is odd times of f0

2 , the sampled
signal spectrum looks like Fig. 2 (b). When the maximum
frequency of the original signal is even times of f0

2 , the
sampled signal spectrum looks like Fig. 2 (c).

a
1
b
1
a
2
b
2

B
1
B
2
B
3

B
2

B
2

|X
S
(f)|

......

-a
1

-b
1

-a
2

-b
2

0
(b)

a
1
b
1
a
2
b
2

B
1
B
2
B
3

B
2

B
2

|X
S
(f)|

......

-a
1

-b
1

-a
2

-b
2

0
(c)

a
1 b

1
a
2 b2

B
1
B
2
B
3

......

-a
1

-b
1

-a
2

-b
2

0
(a)

|X(f)|

f

f

f

Fig. 2. Signal spectra. (a) Dual-band signal. (b) Sampled signal of normal
spectral placement. (c) Sampled signal of inverse spectral placement.

III. OBTAINING VALID SAMPLING FREQUENCY RANGES

The problem that we are considering is to find the con-
straints on direct sampling frequency of two-band signals,
so that no spectral overlapping occurs. To recover correctly
the required signal from the discrete signal spectrum, aliasing
must be avoided [14]. Due to non-aliasing requirement, many
relevant equations for finding the acceptable uniform sampling
ranges of a single signal have been suggested [15], [16]. But
most results are related to the bandpass case. Although [17]
claims to be tackling the multiband case, it only presents
a heuristic search technique to find the feasible sampling
frequency.

A. Spectral Arrangement after Direct Sampling

For a dual-band signal, there should be 8 possible replica
orders when using direct sampling without causing spectral
overlapping in the sampled signal spectrum, as discussed in
[17]. However, for typical applications, one may find that
examining all the possible replica orders eventually ends up
with only few valid replica orders, which yield nonempty
sampling frequency ranges [17]. In some circumstances, it
is not necessary for the sampled signal to possess the same
spectral structure as the signal [13]. Thus, we focus on
two cases of the arrangement of the shifted replicas of the
original spectrum, namely, the normal placement and inverse
placement of the spectrum.

B. Sampling Frequencies for Normal and Inverse Placements

Consider the positive spectrum of the multiband signal is
placed in the lowest positive part, as shown in the dashed-
lined box in Fig. 2 (b). Then the negative spectrum is placed
in the lowest negative part. The spectrum in the dashed-lined
box possesses the same spectral structure as the original signal
spectrum. Then we call this situation the normal spectral
placement. Another case is that the positive spectrum of the
multiband is placed in the lowest negative part and the negative
spectrum is placed in the lowest positive part after sampling,
as shown in the dashed-lined box in Fig. 2 (c). The structure
in the dashed-lined box is different from the original spectral
structure. Then we call this situation the inverse spectral
placement. Note that we add guard-bands which equal the
intermediate zero bandwidth before and after the spectral
bands, in case any engineering imperfection causing sampling
frequency change will not generate overlapping aliasing com-
ponents in practice.

To obtain the conditions for acceptable uniform sampling
rates, a complete set of feasible sampling frequencies is
derived in the following. To avoid spectrum aliasing of the
sampled sequence, the negative and positive parts of the dual-
band signal spectrum should be placed alternately. And the
supreme number of integer m of the half spectrum, which can
be positive and negative spectrum of the dual-band signal in
the interval [0, b2 +B2], should be limited as

m =

⌊
b2 +B2

3B2 +B1 +B3

⌋
=

⌊
b2 +B2

2B2 + b2 − a1

⌋
(1)
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Here, we add guard-bands with bandwidth B2 on the both
sides of the positive and negative spectra to increase sampling
robustness. Also, to be placed correctly in the normal case, m
should be an odd number no less than 1. Similarly, to be placed
correctly in the inverse case, m should be even and no less than
2. To avoid aliasing in the case of normal spectral arrangement,
the upper limit of the sampling frequency is determined by

(m− 1)f0
2

≤ a1 −B2

Thus, we have

f0 ≤ 2(a1 −B2)

m− 1
(2)

and the lower limit of the sampling frequency is determined
by

mf0
2

≥ b2 +B2

and we have
f0 ≥ 2(b2 +B2)

m
(3)

Note that according to the positions of frequency edges, we
have a1 +B1 +B2 +B3 = b2, then the relationship between
a1 and b2 is obtained as:

a1 ≤ b2 −B2 (4)

Therefore, after combining (2) and (3) the available range of
the sampling frequency is

2(b2 +B2)

m
≤ f0 ≤ 2(a1 −B2)

m− 1
(5)

To show the allowable sampling frequencies with respect to
the band positions, we list all the conditions:

2(b2+B2)
m ≤ f0 ≤ 2(a1−B2)

m−1 , m ∈ Z+

1 ≤ m ≤
⌊

b2+B2

2B2+b2−a1

⌋
a1 ≤ b2 −B2

(6)

where there are 4 variables for a fixed m. Dividing by B2 on
both sides of the inequality to cut down the variables, we can
rewrite (6) to relate the B2-normalized sampling rate, f0/B2,
to the B2-normalized highest frequency component, b2/B2 ,
and so on.

2
m · ( b2

B2
) + 2

m ≤ f0
B2

≤ 2
m−1 · ( a1

B2
)− 2

m−1 , m ∈ Z+

1 ≤ m ≤
⌊

(
b2
B2

)+1

2+(
b2
B2

)−(
a1
B2

)

⌋
a1

B2
≤ b2

B2
− 1

(7)
Then, for a fixed m there are 3 variables, namely, f0/B2,

b2/B2 and a1/B2. We draw 3 pictures to illustrate the
relationships among them, as shown in Figs. 3 (a), (b) and
(c). More clearly, Fig. 3 (a) gives the upper and lower limits
of the normalized sampling rate f0/B2 with respect to the
normalized highest frequency component b2/B2 for the values
of m = 1, 3 and 5. Regions with line pattern represent
the acceptable operating points where no aliasing occurs.
Similarly, the admissible sampling rates for signal parameter

a1/B2 are shown in Fig. 3 (b). And the normalized positions
of a1 and b2 need to satisfy the constraint are shown in Fig.
3 (c).
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Fig. 3. Allowable regions (shaded regions) of normal spectral placement.

With the same way, we depict allowable region of sampling
frequencies for values of m = 2, 4 and 6 in Figs. 4 (a), (b)
and (c), in which the sampling frequencies and positions of
the signal are normalised by B2. Aliasing can be avoided as
long as the sampling rate lies within the acceptable ranges of
Figs. 4 (a) and (b).
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Fig. 4. Allowable regions (shaded regions) of inverse spectral placement.

In principle, we can sample the signal as low as the
theoretical minimum (the tip of one of shaded regions in Figs.
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3 (a) and (b). But in practice, real-world devices have sampling
frequency fluctuations, such as lasers and ADCs [18]. The
frequency fluctuation can lead to a new operating point,
which is slightly different from the initially selected one. For
example, the ADC clock jitter would cause vertical movement
of the operating point. The change may cause aliasing when
the operating point is not in the non-aliasing regions, where
the aliasing regions are in between. In the case of big supreme
number, where the non-aliasing region is very narrow, the
problem becomes even worse. To avoid this problem, we need
to use devices with high stability. Thus the implementation
of choosing the operating point must depend on the device
specifications. That is why we need to choose different values
of m to calculate the range of f0.

IV. SIMULATION RESULTS

A mathematical expression for our studied two-band signal
is given by

x(t) = x1(t) + x2(t) =
2∑

i=1

Bisinc(Bit) · 2 cos(2πfit) (8)

where Bi is the right-side bandwidth of real-valued signal
xi(t) = Bisinc(Bit) · 2 cos(2πfit) and we set B1 = 20MHz,
B2 = 40MHz, f1 = 200MHz, f2 = 240MHz. The signal and
its frequency spectrum are shown in Fig. 5.
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Fig. 5. A two-band signal in time domain (a) and frequency domain (b).

When using the method in Section III, the minimum value of
sampling frequency f0 is 180MHz. After sampling the signal
at rate f0 = 180 MHz, we get a discrete-time signal as shown
in Fig. 6 (a). And the frequency spectrum with the normalized
magnitude at the interval [−f0/2, f0/2] is shown in Fig. 6 (b).
It is seen that there are no overlaps in the frequency spectrum
after sampling with the specific sampling frequency and the
sampling frequency is far less than the Nyquist rate 520MHz.
Hence PNS can be implemented with this sampling rate.

The actual signal generated by white Gaussian noise with
a pulse shape filtering is used to verify the proposed method.
The ideal filter is the same as Fig. 5 (b). The Parks-McClellan
algorithm is used to design a linear phase and casual finite
impulse response digital filter to approximate the ideal filter.
We specify the two passbands to extend from 193 to 207,
and 224 to 260 MHz, respectively. The two stopbands extend
from 0 to 187 and 213 to 216 MHz. A maximum stopband
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Fig. 6. Sampled signal with sampling rate f0 = 180MHz.

amplitude of 0.001 and a maximum passband error (ripple) of
0.0012 are specified. 1000 real-valued white Gaussian noise
samples with power 0 dBW are generated. According to our
method, the sampling rate should be 180 MHz. After sampling,
the estimated power spectral density (PSD) with respect to the
frequency is shown in Fig. 7.
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Fig. 7. Estimated power spectral density.

V. CONCLUSION

In this paper, the problem of finding the complete set of
feasible sampling rate of two-band signals when using the
PNS scheme has been solved. The sampling rate is far less
than the Nyquist rate and guarantees no spectral aliasing.
And the allowable regions of sampling rate with respect
to different band edges have been obtained. Also, guard-
bands are added before and after the spectral bands which
increase the robustness of the sampling scheme. Then different
sampling frequency can be chosen depending on individual
application requirements. Moreover, we take an example for
a two-band signal to verify the effectiveness of the proposed
approach.
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