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Abstract—The so-called Partial Relaxation approach has re-
cently been proposed to solve the Direction-of-Arrival estimation
problem. In this paper, we extend the previous work by applying
Covariance Fitting with a data model that includes the noise
covariance. Instead of applying a single source approximation to
multi-source estimation criteria, which is the case for MUSIC,
the conventional beamformer, or the Capon beamformer, the
Partial Relaxation approach accounts for the existence of mul-
tiple sources using a non-parametric modification of the signal
model. In the Partial Relaxation framework, the structure of
the desired direction is kept, whereas the sensor array manifold
corresponding to the remaining signals is relaxed [1], [2]. This
procedure allows to compute a closed-form solution for the
relaxed signal part and to come up with a simple spectral search
with a significantly reduced computational complexity. Unlike
in the existing Partial Relaxed Covariance Fitting approach, in
this paper we utilize more prior-knowledge on the structure of
the covariance matrix by also considering the noise covariance.
Simulation results show that, the proposed method outperforms
the existing Partial Relaxed Covariance Fitting method, especially

in difficult conditions with small sample size and low Signal-
to-Noise Ratio. Its threshold performance is close to that of
Deterministic Maximum Likelihood, but at significantly lower
cost.

I. INTRODUCTION

In the field of sensor array signal processing, Direction-of-

Arrival (DoA) estimation has always been a major area of

research due to its widespread applications in radar, sonar,

seismic exploration, electronic surveillance and mobile com-

munication [3]–[6]. Several high resolution algorithms, such

as Multiple Signal Classification (MUSIC) [7], the minimum

variance method of Capon [8], Estimation of Signal Parame-

ters via Rotational Invariance Technique (ESPRIT) [9] have

been proposed [10], [11]. However, when two or multiple

sources are closely spaced, the performance of conventional

“low-cost” methods strongly degrades [12], [13]. This is due

to the fact that conventional spectral search based approaches

ignore the presence of interfering sources and therefore treat

multi-source scenarios as single source scenarios. With in-

creasing number of sources, the interference power increases

and therefore, the performance of the conventional approaches

degrades.

The Partial Relaxation (PR) framework was introduced to

overcome the aforementioned disadvantages of the conven-

tional spectral-based DoA methods [1], [2]. Instead of ignoring

the presence of multiple sources, the PR approach considers

both the signal impinging from the current direction of interest

as well as the interfering ones. To reduce the computational

demand, the manifold structure of the undesired signal compo-

nents is relaxed, whereas the manifold structure of the desired

signal component is kept unchanged. Closed-form solutions

for the relaxed part of the array manifold are computed and

substituted back into the initial optimization problem which

considers multiple signals. The multi-dimensional optimiza-

tion problem reduces to a one-dimensional problem which

admits a simple spectral based grid search that can be applied

to any array geometry.

Using the PR framework, we propose a new Partial Re-

laxed Full Covariance Fitting (PR-FCF) approach that utilizes

more structure as compared to the existing Partial Relaxed

Covariance Fitting (PR-CF) approach. The proposed PR-FCF

method is of similar computational complexity as compared to

conventional spectral-based techniques, and thus significantly

less complex than optimal Maximum Likelihood (ML) based

methods. In our simulation study, PR-FCF is found to outper-

form previous “low-cost” methods and its threshold Signal-

to-Noise Ratio (SNR) remains close to that of Deterministic

Maximum Likelihood (DML) even in low sample scenarios.

The paper is organized as follows. The signal model is

introduced in Section II. The conventional covariance fitting

DoA approach is introduced as non-linear Least Square (LS)

problem in Section III followed by the PR-CF approach and

the proposed PR-FCF approach in Section IV. Simulation re-

sults are presented in Section V. Finally, Section VI concludes

this paper.

II. SIGNAL MODEL

Let us consider an antenna array equipped with M sensors

and N impinging narrowband signals that satisfy M > N .

The source signal at time instant t is denoted by s(t) =
[s1(t), . . . , sN (t)]

T
∈ CN×1. The DoAs of the signals are

unknown and denoted by θ = [θ1, . . . , θN ]
T

. Furthermore,

the full-rank steering matrix A (θ) ∈ CM×N is given by

A (θ) = [a (θ1) , . . . , a (θN )] ,

where a (θi) ∈ CM denotes the sensor array response for the

i-th impinging signal. The number of sources N is assumed
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to be known. The received baseband signal x(t) ∈ CM at the

t-th time instant is given by

x(t) = A (θ) s (t) + n (t) , t = 1, . . . , T, (1)

where T denotes the number of snapshots and n (t) ∈ CM the

sensor noise. Equation (1) can be equivalently expressed as

X = A (θ)S+N, (2)

where X = [x(1), . . . ,x(T )] ∈ C
M×T denotes the received

baseband signal in matrix notation. The noise matrix is given

by N = [n(1), . . . ,n(T )] ∈ CM×T and the signal matrix is

denoted by S = [s(1), . . . , s(T )] ∈ CN×T . Assuming that

signals and noise variables are statistically independent zero-

mean circularly Gaussian distributed, the covariance matrix of

the received signal R ∈ CM×M is given by

R = E
{

x (t)xH (t)
}

= ARsA
H + σ2

nIM , (3)

where Rs = E
{

s(t)sH(t)
}

denotes the covariance of the

transmitted signal and σ2
nIM is the noise covariance matrix.

Since the true covariance matrix is unavailable in practice, the

sample covariance R̂ is used instead

R̂ =
1

T
XX

H . (4)

The eigenvalue decomposition of (4) is given by R̂ = ÛΛ̂Û
H

where Λ̂ = diag (λ1, . . . , λM ) contains the eigenvalues sorted

in non-ascending order and Û ∈ CM×M is the matrix

containing the associated eigenvectors.

III. CONVENTIONAL DOA ESTIMATORS

In the conventional DoA estimation framework the DoAs

θ are estimated by searching for the steering matrix A in the

highly structured non-convex array manifold which is denoted

by

AN = {A | A = [a(ϑ1), . . . , a(ϑN )] , ϑ1 < . . . < ϑN} . (5)

The multi-source DoA estimation problems are generally of

the following form:
{

θ̃

}

= argmin
A(θ)∈AN

f (A (θ)) , (6)

where f (A (θ)) denotes the multi-source estimation cost

function, following e.g. the DML [4], the Stochastic ML

(SML) [14], or the Weighted Subspace Fitting (WSF) criteria

[15]. However, the multi-source DoA estimation methods

suffer from a very high computational complexity as they

require a multi-dimensional grid search. In order to reduce

the computational complexity, a common approach is to only

consider a single source scenario. The multi-dimensional opti-

mization problem in (6) is reduced to a multiple single source

estimation problem
{

θ̃

}

= Nargmin
a(θ)∈A1

f (a (θ)) ,

where N argmin f (·) denotes N arguments that correspond

to the N deepest minima of the objective function f (a (θ)).

It can be shown that the single source approximation is

equivalent to the multidimensional search if and only if the

steering vectors are orthogonal A
H
A = IN . Defining the

pseudo-spectrum F (θ) = 1
f(a(θ)) as the inverse of the single-

source objective function, in the single source approximation

the DoAs θ are estimated by performing a grid search over

the Field of View (FoV) and determining the N largest peaks

of the pseudo-spectrum.

Conventional Covariance Fitting (CF)

The CF method aims to reduce noise power while preserv-

ing the N target signals. The CF approach is based on the LS

problem [16]

{

Ã, R̃s

}

= argmin
A∈AN , Rs�0

∥

∥

∥
R̂−ARsA

H
∥

∥

∥

2

F
. (7)

Considering the single source approach and using a = a (θ),
the optimization problem reduces to

{

θ̃CF

}

= Nargmin
a∈A1

min
σ2
s≥0

∥

∥

∥R̂− σ2
saa

H
∥

∥

∥

2

F
, (8)

where σ2
s denotes the signal power of the non-relaxed desired

signal part. The source power estimate that minimizes the

inner optimization problem in (8) is given by the conventional

beamformer [17]:

σ̃2
s = argmin

σ2
s≥0

∥

∥

∥R̂− σ2
saa

H
∥

∥

∥

2

F
=

a
H
R̂a

(aHa)
2 . (9)

Including a positive semidefiniteness constraint in the inner

optimization problem of (8) to admit a simple closed-form

solution results in the restricted problem formulation

σ̃2
s = argmin

σ2
s≥0

∥

∥

∥R̂− σ2
saa

H
∥

∥

∥

2

F

subject to R̂− σ2
saa

H � 0.

(10)

From the positive semi-definitness constraint in (10), it follows

that all eigenvalues of R̂− σ2
saa

H are larger than or equal to

zero. Therefore, the minimizer σ̃2
s is given in closed-form by

the Capon spectrum [17], [18]:

σ̃2
s =

1

aHR̂−1a
. (11)

IV. PARTIAL RELAXATION (PR) FRAMEWORK

In the framework of PR [2], we do not only consider the

signals from the desired directions but also from the interfering

directions. However, the structure of the interfering signals is

relaxed and the computational complexity is greatly reduced.

The steering matrix A no longer describes the highly struc-

tured array manifold AN as parameterized in (5). Instead, we

assume that A describes the partially relaxed array manifold

ĀN =

{

A | A= [a(ϑ),B] , a (ϑ)∈A1, B∈C
M×(N−1)

}

,

which still retains some geometric structure of the sensor

array [1]. In the minimization procedure in (6), the objective

function f ([a(θ),B]) is minimized with respect to B. A
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closed-form solution for B is obtained and substituted back

into the objective function. Afterwards a grid search on a(θ)
is applied to locate the N smallest minima [2], which can be

summarized as
{

θ̂

}

= Nargmin
a(θ)∈A1

min
B

f ([a(θ),B]) .

A. Partial Relaxed Covariance Fitting (PR-CF)

Let us decompose A = [a(θ),B] and S =
[

s,JT
]T

, where

s ∈ CT denotes the signals impinging from the desired source

and J ∈ C(N−1)×T denotes the signals of the remaining

sources. Applying the decomposition to the system model in

(2) results in

X = as
T +BJ+N,

where the relaxed received signal satisfies rank (BJ) ≤ N−1.

The sample covariance matrix R̂ is assumed to be positive

definite for T ≥ M , and the signals from other sources are

assumed to be uncorrelated with the signals from the direction

of interest a. By applying the decoupling approach to the

optimization problem in (7) we obtain the PR-CF method [1]
{

θ̂PR-CF

}

= Nargmin
a(θ)∈A1

min
σ2
s≥0,D

∥

∥

∥R̂− σ2
saa

H −DD
H
∥

∥

∥

2

F

subject to: R̂− σ2
saa

H −DD
H � 0 (12)

rank (D) ≤ N − 1,

where DD
H = BE

{

JJ
H
}

B
H . Keeping

{

σ2
s , a

}

fixed and

minimizing (12) with respect to D results in the low-rank

approximation problem [19]

min
D

∥

∥

∥R̂− σ2
saa

H −DD
H
∥

∥

∥

2

F
=

M
∑

k=N

λ2
k

(

R̂− σ2
saa

H
)

subject to: rank (D) ≤ N − 1, (13)

where λk (·) denotes the k-th largest eigenvalue of the matrix

in the argument. Computing the eigenvalue decomposition of

R̂− σ2
saa

H = ŨsΛ̃sŨ
H
s + ŨnΛ̃nŨ

H
n , (14)

where Λ̃s contains the N −1 largest eigenvalues, a minimizer

D̃ of (13) obviously satisfies

D̃D̃
H = ŨsΛ̃sŨ

H
s . (15)

Since (12) corresponds to a classical low-rank approximation

problem [19], the (M−N) smallest eigenvalues of R̂−σ2
saa

H

and R̂−σ2
saa

H−D̃D̃
H are identical. Additionally, R̂−σ2

saa
H

is positive semi-definite if and only if R̂ − σ2
saa

H − D̃D̃
H

is positive semi-definite, therefore the initial optimization

problem in (12) is equivalent to [2]:

min
σ2
s≥0

M
∑

k=N

λ2
k

(

R̂ − σ2
saa

H
)

subject to: R̂− σ2
saa

H � 0.

The optimal σ2
s is computed by the Capon spectrum in (11)

[1] and the pseudo-spectrum is therefore given by

FPR-CF(θ) =
1

∑M

k=N λ2
k

(

R̂− 1
a(θ)HR̂−1a(θ)

a(θ)a(θ)H
) .

B. Partial Relaxed Full Covariance Fitting (PR-FCF)

In the PR-FCF approach we propose to relax the structure

of the covariance matrix in (3) to decrease the computational

complexity. However, compared to the partial relaxation ap-

proach in (12) we will introduce a model that utilizes more

structure by also considering the noise covariance matrix

R̃ = σ2
saa

H +DD
H + σ2

nIM .

The optimization problem is given by
{

θ̂PR-FCF

}

= Nargmin
a(θ)∈A1

min
σ2
s≥0,σ2

n≥0,D

∥

∥

∥R̂− R̃

∥

∥

∥

2

F
(16)

rank (D) ≤ N − 1.

Keeping
{

σ2
s , σ

2
n, a

}

fixed and minimizing (16) with respect

to D results in a low-rank approximation problem. Similar to

the optimization problem in (13), the optimal D that mini-

mizes (16) is given by the best rank-(N − 1) approximation

of R̂−σ2
saa

H−σ2
nIM as described in (14) and (15). Since (16)

corresponds to a classical low-rank approximation problem

[19] with optimizer D̃, the (M − N) smallest eigenvalues

of R̂−σ2
saa

H −σ2
nIM and R̂−σ2

saa
H − D̃D̃

H −σ2
n IM are

identical. Therefore, the initial optimization problem in (16)

can also be expressed as

min
σ2
s≥0,

σ2
n≥0

f
(

σ2
s , σ

2
n

)

= min
σ2
s≥0,

σ2
n≥0

M
∑

k=N

λ2
k

(

R̂− σ2
saa

H − σ2
nIM

)

.

(17)

Computing the first derivative of f
(

σ2
s , σ

2
n

)

with respect to

σ2
n and equating it to zero [20] [21], we obtain the optimal

value for σ2
n

σ̂2
n =

∑M
k=N λk

(

R̂− σ2
saa

H
)

M −N + 1
. (18)

Substituting σ̂2
n back into the objective function in (17) yields

min
σ2
s≥0

f
(

θ, σ2
s

)

= min
σ2
s≥0

M
∑

k=N

λ
2

k (θ)−

(

∑M

k=N λk (θ)
)2

M −N + 1
, (19)

where we have introduced the short form notation λk (θ) =

λk

(

R̂− σ2
saa

H
)

and omit the positivity constraint on σ2
n.

The PR-FCF method can be interpreted as covariance fitting

approach with diagonally-loaded sample covariance matrix.

Depending on the choice of σ2
s , the diagonal loading factor

σ2
n in (18) can either be positive or negative. Noting that

(19) is continuously differentiable, a local minimizer for σ2
s

is determined by applying a local numerical minimization.

In Algorithm IV.1 a Newton-Raphson procedure is used to

estimate σ2
s for every grid-point within the FoV. The procedure

utilizes the first and second order derivative of the cost

function in (19) w.r.t. σ2
s . Before the first iteration we initialize

σ2
s using the conventional beamformer in (9). The pseudo-

spectrum is given by a bi-dimensional function

FPR-FCF

(

θ, σ̂2
s

)

=
1

∑M

k=N λ
2

k (θ)−
(
∑

M
k=N

λk(θ))
2

M−N+1

.
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Computational Aspects: Using the eigenvalue decomposi-

tion of the sample covariance matrix in (4) and the unitary

property of the eigenvector matrix Û, we can equivalently

express λk (θ) as

λk (θ) = λk

(

Λ̂− σ2
sÛ

H
aa

H
Û

)

.

Initially proposed to allow parallel computation of eigenvalues

and eigenvectors of symmetric tridiagonal matrices by Bunch,

Nielsen and Sorensen in [22], the interlacing theorem for a

rank-one modified Hermitian matrix states the following [20]:

Theorem 1: Let D = diag (d1, . . . , dK) ∈ R
K×K denote

a diagonal matrix with distinct elements that are sorted in

descending order. Furthermore assume the non-zero scalar ρ
to be positive and z ∈ CK×1 to contain only non-zero entries.

If the eigenvalues
{

d1, . . . , dK
}

of matrix D−ρzzH are sorted

in descending order as well, then:

•
{

d1, . . . , dK
}

correspond to the K roots of the secular

function

p(x) =1− ρzH (D− xIK)
−1

z

=1− ρ

K
∑

k=1

|zk|
2

dk − x
. (20)

•
{

d1, . . . , dK
}

satisfy the interlacing property

d1 > d1 > d2 > d2 > . . . > dK > dK . (21)

• The eigenvector uk that corresponds to the k-th eigen-

value dk is a multiple of
(

D− dkIK
)−1

z.

For an efficient computation of the eigenvalues λk (θ), the

secular function in (20) and the interlacing property in (21) of

Theorem 1 are used [1], where z = Û
H
a, ρ = σ2

s and D = Λ̂.

In order to compute the minimizer σ2
s of (19) numerically, the

first and second order derivatives of the objective function in

(19) w.r.t. σ2
s have to be computed. Therefore, the first and

the second derivatives of the modified eigenvalues w.r.t. σ2
s

are required [20], [21]. The first derivative of λk (θ) w.r.t σ2
s

is given by

λ
′

k (θ) =−
1

σ4
sz

H
(

D− λk (θ) Im
)−2

z

=−
1

σ4
s

∑M
j=1

|zj|
2

(dj−λk(θ))
2

,

where we have applied Theorem 1. Computing the second

order derivative of λk (θ) w.r.t. σ2
s is straightforward and

corresponds to

λ
′′

k (θ) =
2

σ8
s

(

∑K

j=1
|zj |

2

(dj−λk(θ))
2

)2

×






σ2
s

K
∑

j=1

|zj |
2

(

dj − λk (θ)
)2 −

∑K

j=1
|zj |

2

(dj−λk(θ))
3

∑K
j=1

|zj |
2

(dj−λk(θ))
2






.

Algorithm IV.1 Newton-Raphson Procedure to Estimate σ2
s

1: Initialization: Iteration index τ = 0, initial value x(0) =
∑M

j=1 dj |zj|
2
, tolerance ǫ

2: repeat

3: Compute f ′
(

θ, x(τ)
)

=
∂f(θ,σ2

s)
∂σ2

s

∣

∣

∣

σ2
s=x(τ)

4: Compute f ′′
(

θ, x(τ)
)

=
∂2f(θ,σ2

s)
∂2σ2

s

∣

∣

∣

σ2
s=x(τ)

5: Update x(τ+1) = x(τ) −
f ′(θ,x(τ))
f ′′(θ,x(τ))

6: τ ← τ + 1
7: until

∣

∣x(τ+1) − x(τ)
∣

∣ < ǫ or
∣

∣f ′
(

θ, x(τ)
)∣

∣ < ǫ
8: if x(τ+1) < 0 or f

(

θ, x(τ+1)
)

> f (θ, 0) then

9: σ̂2
s = 0

10: else

11: σ̂2
s = x(τ+1)

12: end if

13: return σ̂2
s

V. SIMULATION RESULTS

In this section, simulation results regarding the Root-

Mean-Squared-Error (RMSE) performance of different DoA

estimators are presented and compared with the stochastic

Cramer-Rao Bound (CRB). All simulations are carried out for

NR = 1000 Monte-Carlo runs. The RMSE

RMSE =

√

√

√

√

1

NRN

NR
∑

r=1

N
∑

n=1

(

θ̂
(r)
n − θn

)2

, (22)

is used as performance indicator, where both the estimated

DoAs θ̂
(r)

= [θ̂
(r)
1 , . . . , θ̂

(r)
N ]T and the true DoAs θ =

[θ1, . . . , θN ]T are sorted in ascending order. After computing

the RMSE, 1% of the estimates with the largest errors are

removed to avoid outliers in the RMSE caused by misdetection

in all methods. We consider a Uniform Linear Array (ULA)

with M = 10 antennas. The antennas have an antenna spacing

equal to half of the wavelength. We consider two uncorrelated

sources at θ = [45°, 50°]T . The transmitted signals are zero-

mean and statistically independent with unit power. The SNR

is given by SNR = 1/σ2
n.

In Figure 1 we investigate the case, where the number

of snapshots T = 8 is smaller than the number of sensors

M = 10. For T < M , the sample covariance matrix in

(4) is singular and not invertible which makes PR-CF non-

applicable. Therefore, the diagonal loading technique with

loading factor γ = 10−4 on the sample covariance matrix

is applied [23] [24]. It can be observed that the proposed

PR-FCF provides better SNR threshold performance than the

existing PR-CF method. PR-FCF exhibits better performance

than PR-CF also for high SNRs.

Figure 2 depicts a scenario for T = 15 snapshots. Since T >
M , no diagonal loading is necessary. The proposed PR-FCF

provides slightly better threshold performance than PR-CF and

yields better RMSE performance for high SNRs.
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Fig. 1. Uncorrelated sources, number of snapshots T = 8
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Fig. 2. Uncorrelated sources, number of snapshots T = 15

VI. CONCLUSION

In this paper, a new CF DoA estimator that utilizes the

PR framework is proposed. In comparison to the existing

PR-CF method, more prior-knowledge on the signal structure

is used. Since the PR-FCF does not require a matrix inver-

sion, it is also applicable for the rank deficient case where

T < M . Therefore, PR-FCF does not require the computation

of an optimal loading factor. However, PR-FCF has slightly

higher computational complexity compared to PR-CF, as a

Newton-Raphson procedure has to be carried out for each grid

point. Nevertheless, it provides greatly reduced computational

demand as compared to optimal DoA estimators such as

DML that require a multi-dimensional search. Simulation

results show that PR-FCF exhibits better performance than

PR-CF, especially in difficult scenarios with small number

of snapshots and low SNR. In the future work we intend to

address outlier detection for the proposed methods.
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