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Abstract—This article describes a probabilistic formulation of
a Weighted Power minimization Distortionless response convo-
lutional beamformer (WPD). The WPD unifies a weighted pre-
diction error based dereverberation method (WPE) and a min-
imum power distortionless response beamformer (MPDR) into
a single convolutional beamformer, and achieves simultaneous
dereverberation and denoising in an optimal way. However, the
optimization criterion is obtained simply by combining existing
criteria without any clear theoretical justification. This article
presents a generative model and a probabilistic formulation
of a WPD, and derives an optimization algorithm based on a
maximum likelihood estimation. We also describe a method for
estimating the steering vector of the desired signal by utilizing
WPE within the WPD framework to provide an effective and
efficient beamformer for denoising and dereverberation.

Index Terms—Denoising, dereverberation, microphone array,
speech enhancement, maximum likelihood estimation

I. INTRODUCTION

When a speech signal is captured by distant microphones,
e.g., in a conference room, it will inevitably contain additive
noise and reverberation components. These components are
detrimental to the perceived quality of the observed speech
signal and often cause serious degradation in many applica-
tions such as hands-free teleconferencing and ASR.

Microphone array signal processing has been investigated
to minimize the aforementioned detrimental effects on the
acquired signal. A filter-and-sum beamformer [1], a minimum-
variance distortionless response beamformer (MVDR) and
MPDR [2]–[6], and a maximum signal-to-noise ratio beam-
former [7]–[9] are widely-used techniques for denoising, while
WPE and its variants [10]–[14] are emerging dereverber-
ation techniques. Techniques for reducing both noise and
reverberation have also been investigated, for example, using
both MVDR and WPE by cascade integration [15]–[18]. The
usefulness of these techniques, particularly for ASR, has been
extensively studied, e.g., at the REVERB challenge [19] and
the CHiME-3/4/5 challenges [20]–[22]. Moreover, advances
in these techniques have led to recent progress on commercial
devices, such as smart speakers [23]–[25].

Recently, a new unified beamforming approach has been
proposed for achieving denoising and dereverberation both
simultaneously and optimally [26], [27]. In [26], researchers
introduced a convolutional beamformer that unifies WPE
and MPDR, and presented a method for optimizing the
beamformer by using a single optimization criterion. It is
referred to as a Weighted Power minimization Distortionless
response beamformer (WPD). We showed experimentally that
this beamformer provides substantially better simultaneous
denoising and dereverberation performance than conventional

cascade integration approaches1. However, the reason for
the effectiveness of the unified approach remains somewhat
unclear because the optimization criterion was constructed
simply by combining existing criteria without any clear theo-
retical justification.

To clarify the mechanism of the unified approach, this article
presents a generative model and a probabilistic formulation of
a WPD, and derives an optimization algorithm based on a max-
imum likelihood (ML) estimation. We also present an iterative
estimation method based on WPD for the steering vector of
the desired signal, which was conventionally assumed to be
given or estimated in advance. A key to successful estimation
is to use multi-input multi-output (MIMO) dereverberation by
WPE [11] within the WPD framework. Experiments using
the REVERB challenge dataset show the importance of using
the MIMO dereverberation to achieve superior denoising and
dereverberation in terms of objective speech enhancement
measures and ASR performance.

In the remainder of this paper, we define the model of the
signal and the beamformer in Section II, and present the proba-
bilistic formulation of WPD in Section III. Section IV derives
the optimization algorithm and describes a processing flow
that utilizes WPE. The experimental results and concluding
remarks are given in Sections V and VI, respectively.

II. MODEL OF SIGNAL AND BEAMFORMER

We assume that a single speech signal is captured by M
microphones in a noisy reverberant environment. The captured
signal in the short-time Fourier transform (STFT) domain is
approximately modeled at each frequency bin [28] by

xt =

La∑
τ=0

aτst−τ + nt, (1)

where t and τ are frame indices, xt = [x
(1)
t , x

(2)
t , . . . , x

(M)
t ]>

is, letting > denotes a non-conjugate transpose, a column
vector containing STFT coefficients of all the microphone
signals at a time frame t, st is the STFT coefficient of
the clean speech signal, at = [a

(1)
t , a

(2)
t , . . . , a

(M)
t ]> for

t = 0, 1, . . . , La is a set of column vectors containing convo-
lutional acoustic transfer functions from the speaker location
to all the microphones, and nt = [n

(1)
t , n

(2)
t , . . . , n

(M)
t ]> is

the additive noise. In this paper, the frequency indices of the

1A recent study has revealed that the WPD yields the same outputs even
when it is implemented with a certain cascade configuration consisting of
a WPE and an MPDR. The details will be discussed in future publications.
The analysis presented in this paper is based on a form of convolutional
beamformer that unifies a WPE and an MPDR into a single filter.
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symbols are omitted for brevity, and on the assumption that
each frequency bin is processed independently in the same
way. Hereafter, we refer to the STFT coefficients of signals
simply as signals.

The first term in Eq. (1) can be further decomposed into
two parts, one consisting of the direct signal and early
reflections, and referred to as a desired signal dt, and the
other corresponding to the late reverberation rt [29]. With this
decomposition, Eq. (1) is rewritten as

xt = dt + rt + nt, (2)

dt =
b−1∑
τ=0

aτst−τ , (3)

rt =

La∑
τ=b

aτst−τ , (4)

where b is a frame index that divides the reverberation into
the two parts. The goal of the beamforming is to preserve
dt, while reducing rt and nt from xt. In this paper, dt, rt,
and nt are assumed to be statistically independent of each
other. (See [10] for a more precise discussion of the statistical
independence of dt and rt.)

With WPD, we further assume that the transfer function
corresponding to the desired signal can be approximated by a
product of a vector v with a clean speech signal, i.e., dt = vst,
in the STFT domain. Then Eq. (2) becomes

xt = vst + rt + nt, (5)

Here, v is also termed a steering vector. This paper sets m =
1 as the reference microphone, and describes a method for
estimating the desired signal at the microphone without loss
of generality. The desired signal at the reference microphone
is represented as

d
(1)
t = v(1)st, (6)

where v(1) is the element of v at the reference microphone.

A. Model of convolutional beamformer

We now define a MIMO convolutional beamformer as

yt = WH
0 xt +

Lw∑
τ=b

WH
τ xt−τ , (7)

where yt is the output of the beamformer, Wt for each t (=
0, b, b+1, . . . , Lw) is an M×M dimensional matrix, which is
composed of the beamformer coefficients, H denotes conjugate
transpose, and b is the prediction delay that corresponds to b
in Eq. (3) and is introduced to prevent the desired signal from
being distorted by the convolutional beamforming [10]. We
further decompose Wt for each t as follows

Wt = [wt, Bt], (8)

where wt = [w
(1)
t , w

(2)
t , . . . , w

(M)
t ]> is an M -dimensional

column vector that denoises and dereverberates the captured
signal, and Bt is an M × (M − 1) dimensional matrix that
extracts the noise from the captured signal. Note that our

interest is in the estimation of wt, but Bt is introduced because
it is necessary for the probabilistic formulation of a WPD.

To characterize wt and Bt, we introduce the following
constraints.

wH
0 v = v(1), (9)

BH
0 v = 0. (10)

Eq. (9) specifies that w0 extracts the desired signal at the
reference channel with no distortion. Eq. (10) specifies that
B0 blocks the signal subspace spanned by v that includes the
desired signal. With the constraints, and based on Eqs. (2) and
(5), Eq. (7) can be rewritten as

yt =

[
y
(1)
t

y
(2:M)
t

]
=

[
d
(1)
t + r̃t + ñt
ṙt + ṅt

]
, (11)

where y(1)t is the first element of yt, y
(2:M)
t is a column vector

containing the other elements of yt, and

r̃t = wH
0 rt +

Lw∑
τ=b

wH
τ (dt−τ + rt−τ ), (12)

ñt = wH
0 nt +

Lw∑
τ=b

wH
τ nt−τ , (13)

ṙt = BH
0 rt +

Lw∑
τ=b

BH
τ (dt−τ + rt−τ ), (14)

ṅt = BH
0 nt +

Lw∑
τ=b

BH
τ nt−τ , (15)

In Eq. (11), r̃t and ṙt are the reverberation that remains after
the beamforming, and ñt and ṅt represent the noise that
remains after the beamforming.

III. PROBABILISTIC FORMULATION

Let θw = {w0,wb, . . . ,wLw
}, θB = {B0, Bb, . . . , BLw

},
θσ = {σ2

t | t = 1, 2, . . . , T}, and θ = {θw, θB , θσ,v} be
model parameter sets, where σ2

t is the time-varying power
of the desired signal, and T is the number of available time
frames. Then, assuming based on Eq. (7) that the probabilistic
uncertainty of xt is derived only from yt when xt−τ for
τ = b, b + 1, . . . , Lw are given, the likelihood function can
be defined and rewritten as

L(θ) = log p({xt}; θ), (16)

=
∑
t

log p(xt | xt−b,xt−b−1, . . . ,xt−Lw
; θ) (17)

=
∑
t

log p

(
WH

0 xt |
Lw∑
τ=b

WH
τ xt−τ ; θ

)
+ 2T log |det(W0)|, (18)

=
∑
t

log p(yt; θ) + 2T log |det(W0)|. (19)

Now, we assume that the optimal beamformer θw can reduce
the level of the reverberation r̃t and that of the noise ñt in
Eq. (11) to be negligibly small, i.e., r̃t+ñt ' 0. Then, the first
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row and the remaining rows in Eqs. (11) can be considered
statistically independent of each other, and thus p(yt; θ) can
be decomposed into p(y(1)t ; θw) and p(y(2:M)

t ; θB). Then, the
likelihood function can be rewritten as

L(θ) =
∑
t

log p(y
(1)
t ; θw, θσ) +

∑
t

log p(y
(2:M)
t ; θB)

+ 2T log
|v(1)|
||v||2

+ T log det(BH
0B0), (20)

where the last two terms in Eq. (20) are derived from the last
term in Eq. (19) based on Eqs. (9) and (10) (See Appendix),
and || · ||2 denotes the Euclidean norm of a vector.

Note that because it is difficult to optimize v based on the
ML estimation, we estimate it separately from the ML esti-
mation as described in Section IV-B. Then, for the estimation
of θw, we need only to estimate Θ = {θw, θσ}, based solely
on the first term in Eq. (20).

Finally, we introduce a model of the probability density
function (pdf) of y(1)t as

p(y
(1)
t ; θw, θσ) = NC(y

(1)
t = w̄Hx̄t; 0, σ2

t ), (21)

where NC(x;µ, σ2) is a pdf of a complex Gaussian distribu-
tion with a mean µ and a covariance σ2, defined as

NC(x;µ, σ2) =
1

πσ2
exp

(
−|x− µ|

2

σ2

)
. (22)

Then, the likelihood function to be maximized becomes

L(Θ) = −
∑
t

|y(1)t |2

σ2
t

−
∑
t

log σ2
t , (23)

= −
∑
t

|w̄Hx̄t|2

σ2
t

−
∑
t

log σ2
t , (24)

where we set w̄ = [w>0 ,w
>
b ,w

>
b+1, . . . ,w

>
Lw

]> and x̄t =
[x>t ,x

>
t−b,x

>
t−b−1, . . . ,x

>
t−Lw+1]>. Note that w̄ and x̄t have

a time gap between their first and the second elements,
corresponding to the prediction delay b.

IV. SOLUTION TO ML ESTIMATION

Because it is difficult to obtain a closed form solution that
maximizes Eq. (24), we adopt an iterative estimation scheme,
by which Eq. (24) is maximized to a stationary point by
alternately updating θw and θσ from certain initial values.

In the step employed to update θw, while fixing σ̂2
t for each

t, θw is updated as one that maximizes the likelihood function
shown below with the distortionless constant in Eq. (9).

L(θw) = −
∑
t

|w̄Hx̄t|2

σ̂2
t

s.t. wH
0 v = v(1), (25)

The solution that maximizes Eq. (25) can be derived based on
the Lagrange multiplier method as

ˆ̄w =
R−1v̄

v̄HR−1v̄
, (26)

where v̄ = [v>/v(1), 0, 0, . . . , 0]> is a column vector con-
taining v/v(1) followed by M(Lw − b + 1) zeros, and R is

MIMO 
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Fig. 1. Iterative beamformer estimation by WPD performed with WPE.

a power-normalized temporal-spatial covariance matrix with a
prediction delay calculated as

R =
∑
t

x̄tx̄
H
t

σ̂2
t

. (27)

Then, the estimate of the desired signal is obtained as

d̂
(1)
t = ˆ̄wHx̄t. (28)

In the other step used to update θσ , σ2
t can be updated as

the power of the estimated desired signal, i.e., σ̂2
t = |d̂(1)t |2.

It may be worth noting that the ML formulation presented
here is reduced to that for MPDR (and its realization based
on a generalized sidelobe canceller) if we set rt = 0 for all t
and Wτ = 0 for τ ≥ b in the formulation and assume that σ2

t

is time invariant.

A. Analysis of the solution

Because d(1)t , r̃t, and ñt in Eq. (11) are mutually indepen-
dent, Eq. (25) can be decomposed, under the distortionless
constraint, as

L(θw) = −
∑
t

|d(1)t |2

σ̂2
t

−
∑
t

|r̃t|2

σ̂2
t

−
∑
t

|ñt|2

σ̂2
t

. (29)

The first term in Eq. (29) does not depend on θw. Thus if
we obtain a beamformer θw that maximizes Eq. (25) for fixed
σ̂2
t , it surely maximizes the sum of the second and third terms

in Eq. (29). As a consequence, the beamformer can perform
denoising and dereverberation simultaneously.

B. Overall processing flow with estimation of v using WPE
For the accurate estimation of v from the captured signal, it

is crucial to exclude any influence of noise and reverberation.
For this purpose, we first reduce the effect of reverberation
by performing MIMO dereverberation using WPE [11] within
the WPD framework (see Fig. 1). Because WPE and WPD
share most of the calculation that requires the majority of their
computing cost, namely the calculation of R in Eq. (27) and
its inverse, WPE can be performed very efficiently within the
WPD framework to obtain the dereverberated multichannel
signal, d̂WPE

t . In concrete terms, let R̃ be an M(Lw − b +
1) ×M(Lw − b + 1) dimensional submatrix of R, obtained
by excluding the first M rows and M columns from R. For
WPE, we need to calculate R̃ and its inverse, which accounts
for the majority of the computing cost of WPE. Then, once
we have R̃ and its inverse, we can calculate R and its inverse
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TABLE I
CD (DB), FWSSNR (DB), AND WER (%) OF ENHANCED SPEECH

OBTAINED AFTER 1ST ITERATION USING REVERB CHALLENGE EVAL
SET. NO ENH MEANS NO SPEECH ENHANCEMENT. BOLDFACE INDICATES

THE BEST SCORE FOR EACH METRIC.

SimData RealData
CD FWSSNR WER WER

No Enh 3.97 3.62 4.35 18.61
MPDR 3.43 5.97 5.56 14.68
WPE 3.74 4.79 4.37 13.44

WPE+MPDR 3.02 7.30 4.42 10.46
WPD w/o WPE 3.23 6.25 4.82 12.06
WPD w/ WPE 2.65 7.98 3.83 9.90

with little additional computing cost [30]. Finally, we estimate
v from dWPE

t by reducing the effect of the noise based on
generalized eigenvalue decomposition with noise covariance
whitening [31], [32], assuming that the noise-only periods are
given.

Figure 1 shows the overall processing flow of WPD when
utilizing WPE to estimate v. Adopting the power of the cap-
tured signal as the initial value of σ2

t , we iterate WPD jointly
with WPE, and update v and σ2

t using the outputs of WPE
and WPD, respectively. In each iteration, the beamformer ˆ̄w

and the desired signal d̂(1)t are updated based on Eqs. (26),
(27), and (28) using the estimated v̂ and σ̂2

t .

V. EXPERIMENTS

A. Dataset and evaluation metrics

We evaluated the performance of the proposed method using
the REVERB Challenge dataset [19]. The evaluation set (Eval
set) of the dataset is composed of simulated data (SimData)
and real recordings (RealData). Each utterance in the dataset
contains reverberant speech uttered by a speaker and stationary
additive noise. The distance between the speaker and the
microphone array is varied from 0.5 m to 2.5 m. For SimData,
the reverberation time is varied from about 0.25 s to 0.7 s, and
the signal-to-noise ratio (SNR) is set at about 20 dB.

Evaluation metrics prepared for the challenge were used
in the experiments. As objective measures for evaluating
speech enhancement performance [33], we used the cepstrum
distance (CD), and the frequency-weighted segmental SNR
(FWSSNR). To evaluate the ASR performance, we used a
baseline ASR system recently developed using Kaldi [34].
This is a fairly competitive system composed of a TDNN
acoustic model trained using lattice-free MMI and online i-
vector extraction, and a tri-gram language model.

B. Methods to be compared and analysis conditions

WPD (Proposed) was compared with WPE, MPDR, and
the integration of WPE followed by MPDR in a cascade
configuration (WPE+MPDR). To confirm the importance of
utilizing WPE within the WPD framework, we examined
the performance of WPD with and without WPE. The two
configurations are respectively referred to as WPD w/ and
w/o WPE. Without WPE, WPD estimates v from the captured
signal, and does not update it during the iterative estimation.

0 1 2 3 4 5
8

10

12

14

16

18

20

W
o

rd
 E

rr
o

r 
R

a
te

 [
%

] 
 

# iterations

WPE

WPE+MPDR

WPD w/o WPE

WPD w/ WPE

0 1 2 3 4 5
3

4

5

6

7

8

9

F
re

q
u

e
n

cy
-w

e
ig

h
te

d
 S

S
N

R
 [

d
B

]

Fig. 2. Performance curve of FWSSNRs (dB) and WERs (%) with increases
in # of estimation iterations. FWSSNRs are evaluated using SimData of Eval
set and WERs are evaluated using RealData of Eval set.

For all the methods, a Hann window was used for a short-
time analysis with the frame length and the shift set at 32 ms
and 8 ms, respectively. The sampling frequency was 16 kHz
and M = 8 microphones were used for all the experiments.
For WPE, WPE+MPDR, and WPD, the prediction delay was
set at b = 4, and the length of the prediction filter was set at
Lw = 12, 10, and 6, respectively, for frequency ranges of 0 to
0.8 kHz, 0.8 to 1.5 kHz, 1.5 to 8 kHz. For the estimation of
v, we assumed that each utterance had noise-only periods of
225 ms and 75 ms, respectively, at its beginning and ending
parts.

C. Evaluation results

Table I summarizes the CDs, FWSSNRs, and WERs of the
captured signals and the enhanced signals obtained after the
first estimation iteration. In the table, all the methods improved
the captured signal with all the measures except for the WERs
on SimData. While WPD w/ WPE performed the best of all,
WPD w/o WPE did not perform very well. This indicates that
the reliable estimation of v is very important for successful
beamforming by WPD, and it can be achieved by utilizing
WPE for the estimation of v within the WPD framework.

Figure 2 shows the performance curve of the methods
in terms of FWSSNRs and WERs when we performed the
iterative estimation. We confirmed that WPD with WPE again
greatly outperformed all the other methods for all the iteration
times, and the iterative estimation was effective at least in the
first few steps for WPD.

VI. CONCLUDING REMARKS

We presented a probabilistic formulation of WPD that
achieves dereverberation and denoising both simultaneously
and optimally, and derived an optimization algorithm based
on the ML estimation. Furthermore, we proposed a method
for effectively estimating the steering vector of the desired
signal by incorporating WPE into the WPD framework. The
experiments showed that WPD with WPE greatly outper-
formed conventional approaches, including one that utilizes
WPE followed by MPDR in a cascade configuration, and that
the incorporation of WPE into the WPD framework is very
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important if we are to achieve a reliable estimation of the
steering vector for successful beamforming.

APPENDIX
DECOMPOSITION OF |det(W0)|

Let us decompose the first column of W0 in Eq. (8) as
w0 = e + b, where e is a projection of w0 to v, which is
determined based on Eq. (9) as

e =
(v(1))H

||v||22
v, (30)

and b is a component that is orthogonal to v. Note that b is
linearly dependent on the subspace spanned by B0.

Then, |det(W0)| can be expanded as

|det(W0)| = |det([e + b, B0])|, (31)
= |det([e, B0]) + det([b, B0])|, (32)
= |det([e, B0])|, (33)

= det

([
eH

BH
0

]
[e, B0]

)1/2

, (34)

= det

([
eHe 0

0 BH
0B0

])1/2

, (35)

= det(eHe)1/2 det(BH
0B0)1/2, (36)

=
|v(1)|
||v||2

det(BH
0B0)1/2. (37)

As a consequence, |det(W0)| is decomposed into one based
only on v and another based only on B0. Note that
det(BH

0B0)1/2 is equal to the absolute value of the product of
all the singular values of B0.
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