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Abstract—In this paper, we propose a new nonparametric
filtering framework combining manifold learning and particle
filtering. Diffusion maps, a nonparametric manifold learning
method, is applied to obtain a parametric state-space model,
inferring the state coordinates, their dynamics, as well as the
function that links the state to the noisy observations, in a purely
data-driven manner. Then, based on the inferred parametric
model, a particle filter is devised, facilitating the processing of
high-dimensional noisy observations without rigid prior model
assumptions. We demonstrate the performance of the proposed
approach in a simulation of a challenging tracking problem with
noisy observations and a hidden model.

Index Terms—Manifold learning, nonparametric filtering, non-
linear filtering, sequential Markov chain Monte Carlo

I. INTRODUCTION

In recent years, sequential data sets have become highly
evolved with constantly increasing dimensionality. This
progress poses significant challenges to classical parametric
techniques, such as the seminal Kalman filter (KF) [1], since
their prototypical linear and Gaussian models do not capture
well the complexity of the data. To address these challenges,
one possible approach is to view the high-dimensional se-
quential data as observations of a dynamical system, which is
controlled by latent, low-dimensional driving variables [2]–[7].
Since such dynamical systems could be highly complex and
could be lacking a definitive model, nonparametric methods
are typically applied. Indeed, nonparametric sequential filter-
ing has recently gained considerable attention, e.g., in [7]–[11].
In general, lacking regularization and constraints, nonparamet-
ric methods are prone to perform poorly when the observations
are affected by noise. To address this disadvantage, in [9],
a nonparametric technique based on Bayesian filtering and
Gaussian processes is proposed for filtering observations re-
sulting from nonlinear stochastic dynamical systems. However,
modeling based on Gaussian processes might have limited
expressivity. In another recent work [11], a Koopman operator-
based method is introduced, where a new representation of the
data is obtained by relying on a predefined dictionary, followed
by nonparametric filtering using an adapted KF. While the
dictionary-based representation may provide adequate regu-
larization, it requires prior knowledge. In addition, both [9]
and [11] require a training set of hidden state-space samples,
which could be hard to obtain in many real-world scenarios.

In this paper, we propose a nonparametric framework based
on a hybrid approach, which combines a particle filter (PF),

a parametric method, with nonparametric data-driven model
inference of the system. Our method leverages a particular
nonparametric manifold learning technique, diffusion maps
(DM) [12], to obtain a parametric model of the observed
dynamical system. We show that, solely from observations in
a purely data-driven manner, DM reveals an initial represen-
tation of the latent driving variables with an estimate of their
dynamics, as well as the function that links the latent variables
to the noisy observations. In turn, the inferred model lays the
ground for improving the representation by sequential filtering
with a PF. As a result, the necessary parametrization of the
PF is obtained in a nonparametric data-driven way, thereby
adhering to complex sequential data.

The main contribution of this paper is three-fold. First, we
devise a data-driven particle filter that can be employed in
a completely unknown setting, by recovering the unknown
model from observations with only minimal prior assumptions.
Second, for improved noise robustness, we propose to first
map the observations into a high-dimensional space using echo
state representation [13]–[15]. Interestingly, as demonstrated
in a large body of work, including support vector machines
[16], compressed sensing [17] and sparse representations [18],
inflating the initial dimension and obtaining highly redundant
representation improves the subsequent dimension reduction.
Third, relative to [19] this paper exhibits several advantages:
Both [19] and this paper are based on a model inferred from
DM. While [19] relies on a KF, which is restricted to Gaussian
observations, the present work employs a PF, which supports
non-Gaussian observations. Furthermore, we propose a new
method for estimating the time-varying state noise, whereas
the previous work made use of a time-invariant covariance
matrix to represent this noise. In addition to the theoretical
justification provided throughout the paper (c.f. Sec. VI), we
empirically demonstrate the advantage of the proposed PF
compared to the KF-based method. In particular, we show that
the performance of the KF-based method deteriorates when the
noise level is high. Conversely, we show that the proposed PF
equipped with the new robust estimation of the state noise
obtains superior performance.

II. SIGNAL MODEL

Consider a set of N observations z [t] ∈ Rn governed
by some underlying latent variables θ [t] ∈ Rm, such that
z [t] = g (θ [t]), where g : Rm → Rn is an arbitrary nonlinear
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measurement function and t denotes the time index. We further
assume that θ [t] evolves in time according to

θ [t+ ∆t] = θ [t] + ∆θ [t] , (1)

where ∆t is a small time step and ∆θ [t] is defined by

∆θ [t] = −∇θ[t]U (θ [t]) ∆t+

√
2

β
∆w [t] , (2)

wherew [t] ∈ Rm is Brownian motion, ∆w [t] = w [t+ ∆t]−
w [t], U (θ [t]) is the potential field of θ [t] and β is some con-
stant. This propagation model can be viewed as a discretization
of a Langevin equation with no external force [20].

III. PRELIMINARIES ON PARTICLE FILTERS

In the sequel, we briefly describe a formulation of a PF
based on the signal model presented in Sec. II. Assume we
are given a set of observations z[t], a measurement likelihood
function (MLF) p(g(θ[t])|z[t]) and a state prediction function
(SPF) p(θ[t+ ∆t]|θ[t]).

The PF is a sequential procedure based on a set of K
particles, θ̃(i) [t] , i = 1, . . . ,K, where each particle represents
a possible realization of the state of the latent variables θ [t].
The particles are initially sampled from some distribution
at time t = 0. At each time t > 0, the particles are
propagated iteratively in time according to the SPF. Then,
an approximation of the current state, denoted by θ̂ [t], is
determined by a weighted average over all particles θ̃(i) [t]
according to θ̂ [t] =

∑K
i=1 ωi [t] θ̃(i) [t] , where ωi [t] is the

weight of the i-th particle. The weights are equal to the MLF
of the associated particles ωi [t] = p

(
z̃(i) [t] |z [t]

)
, where

z̃(i) [t] = g(θ̃(i) [t]) describes the expected observation z̃(i) [t]
given particle θ̃(i) [t].

In many PF implementations, the particles associated with
small weights are resampled using the MLF, which ensures
that only the most probable particles are considered in the
subsequent propagation step. For more details on PFs, we refer
the readers to [21] and references therein.

IV. PROPOSED METHOD

The PF in the previous section requires the MLF and SPF,
which are unknown in the setting considered in this paper.
Particularly, knowledge of the unknown measurement function
g(θ[t]) and the unknown evolution in (2) is required for
deriving the MLF and SPF, respectively.

In this section, we first show that by applying DM [12], we
can obtain new state coordinates with the required knowledge
of (i) the SPF, and (ii) an appropriate MLF. Since these
required model properties are unknown in many real-world
applications, the proposed PF approach is applicable in a broad
range of problems. Fig. 1 summarizes the proposed approach.

DM-based Model Inference. DM is a manifold learning
technique which relies on eigenvalue decomposition of a
normalized affinity matrix. A common affinity measure is
based on a variant of the Mahalanobis distance, which was
introduced in [22] and is defined by

w (z [t] , z [τ ]) = exp
(
− | 12 (∆z)TM(∆z)|2

/
ε2
)
, (3)

z [t] observations

DM

ψl (θ [t])

State
representation

p(ψl[t+ ∆t]|ψl[t])

SPF

p(z̃[t]|z[t])

MLF

PF

ψ̂l (θ [t])

Filtered state representation

Fig. 1. Scheme of the proposed approach. DM is applied to the observations
z [t] to obtain a representation of the latent variables θ [t], ψl (θ [t]), as well
as an SPF and an MLF necessary for the application of the PF. These are
used as input and parametrisation of the PF which returns a filtered version
of ψl (θ [t]). Note that only z [t] is known beforehand.

where ε is a scaling factor, which is usually set per application,
∆z = z [t] − z [τ ], and M = C−1 [t] + C−1 [τ ], where
C [t] is the covariance matrix of z [t]. The affinity matrix
W ∈ RN×N , whose (t, τ) element is w (z [t] , z [τ ]), is then
normalized to be row stochastic, which yields the matrix
K ∈ RN×N .

Formally, given a set of N observations z [t] in Rn, the
normalized pairwise affinity matrix K is of size N×N having
N eigenvalues associated with N eigenvectors ψl ∈ RN , l =
1, . . . , N . Using m eigenvectors corresponding to the largest
m eigenvalues, each observation can be (nonlinearly) mapped
to a new representation by

z[t] 7→ (ψ1[t], ψ2[t], . . . , ψm[t]) ∈ Rm, (4)

where ψl[t] is the t-th element of the eigenvector ψl, t =
1, . . . , N . According to [12], setting m < n attains dimension
reduction while preserving the affinity between the different
samples.

It was shown in [22] that the particular use of the Ma-
halanobis distance in the affinity (3) gives rise to the new
representation in (4), which extracts the ‘essence’ of the
observations and serves as a proxy of the latent variables
θ [t]. Namely, the m eigenvectors associated with the m largest
eigenvalues constitute a new coordinate system of an inferred
latent state-space. For convenience, we denote the implicit
dependence of the eigenvectors on the latent state variables
by ψl (θ [t]) := ψl[t].

State prediction function. It was shown in [19] that for state
equations of the form of (2), the eigenvectors obtained by DM
evolve according to a discretization of a Langevin equation
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given by

∆ψl (θ [t]) = −λlψl (θ [t]) ∆t

+

√
2

β
‖∇θ[t]ψl (θ [t]) ‖2∆w̃l [t] , (5)

where ∆ψl (θ [t]) is the difference between two consecutive
samples of ψl (θ [t]), w̃l[t] denotes Brownian motion and
−λl = (2 log νl)/ε with νl being the l-th eigenvalue and ψl
the l-th eigenvector obtained by the eigenvalue decomposition
of K.

Broadly, the evolution of the eigenvectors in (5) was ob-
tained by Itô stochastic calculus [23] relying on the evolution
of θ[t] according to a Langevin equation (2), assuming a
sufficiently small time step between consecutive samples. We
note that the use of Mahalanobis distance in (3) simplifies the
evolution, enforcing β = 2.

The evolution in (5) gives rise to a parametric model of
the dynamics of the new coordinates obtained by DM, even
if the state-space and its, possibly nonlinear, dynamics are
unknown. We propose to derive the SPF of the PF from (5).
By the properties of Brownian motion [24] and (5), we have

∆ψl (θ [t]) ∼ N
(
µ [t] , σ2 [t]

)
, (6)

where

µ [t] = −λlψl (θ [t]) ∆t,

σ2 [t] =
2

β
‖∇θ[t]ψl (θ [t]) ‖22∆t. (7)

The parameters of this Gaussian model are completely deter-
mined by the eigenvalues νl and eigenvectors ψl of K, with
the exception of the term

‖∇θ[t]ψl (θ [t]) ‖2 =

√√√√ m∑
i=1

(
∂ψl (θ [t])

∂θi [t]

)2

≈

√√√√ m∑
i=1

(
∆ψl (θ [t])

∆θi [t]

)2

, (8)

where m, which is the unknown dimensionality of the hidden
parameters θ [t], is required. Here, ∆ψl (θ [t]) is used to
approximate ∂ψl (θ [t]) in this discrete setting where only
N samples are available. In the same manner, ∆θi [t] is the
discrete approximation of ∂θi [t].

One of the contributions of this paper is an estimation of
σ2[t]. We note that previous work [19] was based on the same
evolution of the eigenvectors (5), where the drift µ[t] was
directly determined by the eigenvalues νl and eigenvectors ψl,
but the diffusion term σ2[t] was set to be a constant covariance
matrix. In the remainder of this section, we propose a new
method for approximating this diffusion term, which improves
the accuracy of the model and facilitates the employment of
the PF in a significantly larger set of problems, not restricted
only to i.i.d Gaussian noise.

If m = 1, (8) can be recast as

‖∇θ[t]ψl (θ [t]) ‖2 ≈
|∆ψl (θ [t]) |
|∆θ [t] |

. (9)

To obtain an approximation of this gradient, we analyze
how small changes in θ[t] affect the coordinates ψl(θ[t]).
For this purpose, we first approximate |∆θ[t]| by calculating
|∆θ[t]| ≈ minτ |θ[t]−θ[τ ]|. Then, we compute |∆ψl (θ [t]) | ≈
|ψl (θ [t]) − ψl (θ [τ ]) | using the minimizing τ . Since we do
not have access to θ[t], we rely on [22], which showed that
the Euclidean distance between samples of the hidden state
‖θ[t] − θ[τ ]‖2 can be approximated using a variant of the
classical Mahalanobis distance between the observations z[t]
presented in (3). We omit the details of this - essentially linear
- approximation and refer the readers to [22]. For improved
stability, the k smallest distances are considered, yielding

‖∇θ[t]ψl (θ [t]) ‖2 ≈
1

k

∑
τ∈T

(
|∆ψl|

|θ [t]− θ [τ ] |

)
, (10)

where ∆ψl = ψl (θ [t])−ψl (θ [τ ]), and T is the set of the time
indices of the k nearest neighbors of θ [t]. Since ψl (θ [t]) could
be noisy due to model mismatches and estimation errors, we
further improve the approximation by using linear regression
instead of averaging. Concretely, for each θ [t], the k smallest
distances |θ [t]−θ [τ ] | and the associated distances |ψl (θ [t])−
ψl (θ [τ ]) | are used to linearly fit

|ψl (θ [t])− ψl (θ [τ ]) | = a|θ [t]− θ [τ ] |2, (11)

where | · |2 denotes the `2-norm. The fitted variable a can
subsequently be used to approximate ‖∇θ[t]ψl (θ [t]) ‖2. The
fitted variable a can subsequently be used to approximate
‖∇θ[t]ψl (θ [t]) ‖2.

If m > 1, by similar considerations, the following approx-
imation is used

‖∇θ[t]ψl (θ [t]) ‖2 ≈
‖∆ψl (θ [t]) ‖2
‖∆θ [t] ‖2

, (12)

at the expense of an induced squared estimation error

E = ∆ψ2
l (θ [t])

(
m∑
i=1

(
1

∆θi [t]

)2

− 1∑d
i=1 (∆θi [t])

2

)
.

Note that this error is not bounded, i.e., E → ∞ if m →
∞, yet, θ [t] is assumed to be low dimensional, reducing the
influence of E.

Measurement likelihood function. Since the eigenvectors
ψl (θ [t]) form a set of basis elements, any real function
defined on the latent variables θ [t], including the measurement
function g (·), can be written as a linear combination of
the eigenvectors ψl (θ [t]) . Thus, the i-th coordinate of the
observation z[t] is given by

zi [t] = gi (θ [t]) =
N∑
l=1

γi,lψl (θ [t]) , (13)

where γi,l are the expansion weights given by inner products
[19]. Typically, it is sufficient to use only the first d eigenvec-
tors retaining the most important information

zi [t] ≈
d∑
l=1

γi,lψl (θ [t]) , z̃i[t], (14)

2019 27th European Signal Processing Conference (EUSIPCO)



where the number of considered eigenvectors d is typically
determined heuristically, e.g., using the eigenvalue gap [25].

To account for noise and model mismatches, the MLF is
modeled as a Gaussian with diagonal covariance matrix Σ [t],
where the i-th diagonal element is the variance of zi [t], i.e.,
the i-th coordinate of the n-dimensional observation z [t].
Note that if there is some prior knowledge regarding the
measurement noise, the MLF can be adapted to the specific
noise distribution, e.g., Poisson noise.

We summarize the proposed PF algorithm (cf. Fig. 1):
1) Given the system observations z[t], a new set of coor-

dinates representing the system state, ψl(θ[t]), is con-
structed by applying DM to z[t].

2) Based on the theoretical properties of the DM coordi-
nates, the SPF and MLF are defined as

SPF: p(ψl[t+ ∆t]ψl[t]) ∼ N
(
−λlψl[t], σ2[t]

)
,

MLF: p(z̃[t]|z[t]) ∼ N (ΓΨ,Σ[t]) ,

where ψl[t] = ψl(θ[t]) denotes the l-th coordinate of
the new state representation at time t, σ2[t] is cal-
culated according to (7) and the procedure described
thereafter, Γ is a diagonal matrix where the i-th diagonal
element is γi,l and Ψ is a matrix whose l-th row is
(ψl[1], ψl[2], ..., ψl[N ]).

3) At each time step t and for each coordinate l, new
particles, denoted by ψ̃

(i)
l [t], i = 1, . . . ,K, are drawn

from the SPF and the state estimate is then calculated
according to ψ̂l[t] =

∑K
i=1 ωi[t]ψ̃

(i)
l [t], where ωi[t] =

p
(
z̃(i) [t] |z [t]

)
is given by the MLF.

V. ECHO STATE REPRESENTATION

Samples z [t] recorded in real-world scenarios are usually
affected by noise which is currently not taken into account
in our signal model. To address this issue, we represent the
accessible observations in the echo state [13]–[15] which was
shown to improve the noise robustness if the noise samples
are statistically independent over time.

Concretely, z [t] ∈ Rn is transformed to a higher-
dimensional echo state x [t] ∈ Ro by

x [t] = tanh (Wxx [t−∆t] +Wiz [t]) , (15)

where o � n and tanh(·) denotes the hyperbolic tangent.
While Wi ∈ Ro×n maps the current sample into the echo state
space, Wx ∈ Ro×o propagates the echo state one step forward
in time. Matrices Wx and Wi are randomly initialized and
remain constant. In Sec. VI, we empirically show the benefit
of the echo state representation, when the observations z[t]
are replaced by x[t] as input to our algorithm (cf. Fig. 1).

VI. EXPERIMENTAL RESULTS

The proposed PF is evaluated on a nonlinear tracking
problem: the hidden state θ [t] ∈ R2 evolves by

∆θ1 [t] = (3.0− 0.1θ1 [t]) ∆t+ ∆w1 [t]

∆θ2 [t] = (0.5− 0.1θ2 [t]) ∆t+ ∆w2 [t]
(16)

and can be interpreted as the Cartesian coordinates of an object
moving in a two-dimensional space. Nonlinear observations
are given in polar coordinates

z [t] =

(
φ [t]
r [t]

)
=

 arctan
(
θ1[t]
θ2[t]

)√
(θ1 [t])

2
+ (θ2 [t])

2

+ v [t] , (17)

with radius r, azimuth φ (both with respect to a reference
position) and additive Gaussian noise v [t]. This typical simul-
taneous localization and mapping (SLAM) problem poses two
challenges for filtering. First, the observations are nonlinear,
rendering many classical filtering methods useless. Second, we
assume here that the model of the problem, including the state
coordinates, the dynamics, and the measurement function, is
unknown and needs to be inferred from the noisy observations.
In our simulation, we set ∆t = 0.01 and N = 1000. For each
noise level, 100 different realizations of latent variables are
evaluated to reduce the dependence on particular values. For
the same reason, we calculate the average estimation error over
8 different realizations of the echo state representation. The
hyperparameters of the algorithm are set to achieve the best
empirical performance as follows. The affinity scale ε in (3) is
set to 4 times the median distance between the observations.
The Mahalanobis distance is computed in short time windows
of 20 samples [5]. The dimensionality of the state is m = 2,
and k = 8 in the estimation of ‖∇θ[t]ψl (θ [t]) ‖2 (see (10)).
The number of particles is K = 5000. For the echo state
representation, o = 100 dimensions are used, and 60% of the
entries of Wx are set to zero.

We compare the performance of the proposed PF to a DM-
based KF [19] and to a naı̈ve solution, where no filtering is
applied. For brevity, we do not include comparisons to other
methods. However, it was shown in [19] that the DM-based KF
outperformed a number of competing nonparametric methods
[9], [11] in the considered scenario and performed similarly
to parametric methods, e.g., extended KF, a classical PF and
a work by Tan et al. [26] having knowledge of the hidden
unknown model. Note that DM-based KF uses a similar SPF
as our approach but ignores the variance term σ2 [t] which is
estimated in our approach based on (12).

The results are evaluated by the correlation between the
obtained representation and θ [t] and the root mean squared
error (RMSE) between the true state θ [t] and the estimated
state θ̂ [t]. Here, θ̂ [t] is obtained by mapping ψ̂1 (θ [t]) and
ψ̂2 (θ [t]) to the observation space using (13), and then from
the observation space to the true space of the latent variables
using g−1. Note that the existence of g−1 is not a requirement
of the method, and would in any case be unknown to it. It was
used only to establish a reference for our evaluation.

In Fig. 2, results are illustrated for varying SNRs. Especially
in the presence of low noise, the proposed method outperforms
the KF and the naı̈ve null filter in terms of the described
evaluation criteria for both dimensions of θ [t]. Applying the
proposed PF to the echo state representation further improves
the results compared to using the presented method with raw
observations only (c.f. Fig. 3).
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Fig. 2. Results of proposed PF (purple) compared to DM-based KF (red) and initial representation ψl (θ [t]) (blue): correlation between (a) θ1 [t] and
ψ̂1 (θ [t]), (b) θ2 [t] and ψ̂2 (θ [t]), RMSE between (c) θ1 [t] and θ̂1 [t], (d) θ2 [t] and θ̂2 [t].
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Fig. 3. Results of proposed PF with raw observations (purple) and echo state-
represented data (black) as input: correlation between (a) θ1 [t] and ψ̂1 (θ [t]),
(b) θ2 [t] and ψ̂2 (θ [t]).

VII. CONCLUSIONS

We proposed a new PF based on a parametric model that
is inferred from observations using (nonparametric) DM. We
showed that the proposed PF outperforms the KF presented
in [19] in a challenging tracking problem including noisy
observations and a completely hidden underlying model. This
shows that the inherent nonlinearity of the PF as well as the
improved exploration of the state-space are essential. Future
work will include the application of the proposed method to
measured data. In addition, the presented experimental results
suggest that the combination of echo state representation and
manifold learning could be very powerful; we will further
explore this direction.
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