
Exact Multiplicative Factor Updates for
Convolutional Beta-NMF in 2D
Pedro J. Villasana T.

ATG Sound Technology Research
Dolby Sweden

Stockholm, Sweden
Pedro.Villasana@dolby.com

Stanislaw Gorlow
ATG Sound Technology Research

Dolby Sweden
Stockholm, Sweden

Stanislaw.Gorlow@dolby.com

Abstract—In this paper we extend the convolutional NMF with
the beta-divergence as cost function to two dimensions and derive
exact multiplicative updates for its factors. Our updates correct
and generalize the nonnegative matrix factor deconvolution, as
proposed by Schmidt and Mørup. We prove that the cost is non-
increasing under the new updates for beta between 0 and 2. By
numerical simulation we confirm that both the cost’s mean and
standard deviation are monotonically decreasing in a consistent
manner across the most common values for beta.

Index Terms—Nonnegative matrix factorization, multiplicative
updates, beta-divergence, convolution, 2D

I. INTRODUCTION

Nonnegative matrix factorization (NMF) finds applications
in the field of machine learning and in connection with inverse
problems. NMF became popular after Lee and Seung derived
multiplicative factor updates for gradient descent that lead to a
faster convergence without violating nonnegativity of the data
[1]. In [2], they further gave proof of their convergence to a
stationary point, using the squared Euclidean distance and the
generalized Kullback–Leibler divergence as cost function. The
factorization’s origins can be traced back to [3], [4].

A convolutional variant of the factorization was introduced
in [5]. There, the basic idea is to model temporal relations in
the neighborhood of a point in the time-frequency plane. The
corresponding factor updates are taken from [2] and result in a
biased factorization. To provide a remedy, multiple activation
matrices are updated in [6], one for each translation, and the
final update is made by taking the average over all activation
matrices. The exact same principles are applied in [7]. There,
the authors combine the updates from [2] with the averaging
from [6] in an efficient manner. Why these updates are inexact
is explained in [8]. A nonnegative matrix factor deconvolution
in 2D that uses either the squared Euclidean distance or the
Kullback–Leibler divergence as the cost can be found in [9].
It is worth pointing out that the update rule for the activation
matrix is different from those in [5]–[7]. Convolutional NMF
has been deployed with arguable success, e.g., to extract sound
objects [5], to separate speakers [6], to detect onsets [7], to
transcribe music [9], and recently to enhance speech [10] or
to discover recurrent patterns in neural data [11].

In this paper, we continue and extend our previous work on
the convolutional NMF under β-divergence (β-CNMF) [8] to

two dimensions and derive exact multiplicative updates for its
factors. The updates generalize the factor deconvolution, as it
was introduced in [9], to the family of β-divergences. As we
provide a summary of the derivation, it can easily be shown
that one of the update rules in [9] is incorrect when the cost
is set equal to the Kullback–Leibler divergence. We show that
our updates lead to a monotonically decreasing β-divergence
[12] in terms of the mean and the standard deviation and that
the corresponding convergence curves are consistent across the
most common values for β. A formal proof is further given to
validate the numerical results. Note that in [13] it was shown
that the β-divergence allows to construct an estimator that is
more robust to outliers than the Kullback–Leibler divergence.

II. NONNEGATIVE MATRIX FACTORIZATION

Nonnegative matrix factorization (NMF) is an umbrella term
for a low-rank matrix approximation of the form

V 'WH = U (1)

with V ∈ RK×N>0 , W ∈ RK×I>0 , and H ∈ RI×N>0 , where I is
the predetermined rank of the factorization. The letters above
help distinguish between visible (v) and hidden variables (h)
that are put in relation through weights (w). The factoriza-
tion is usually formulated as a minimization problem with an
associated cost function C according to

minimize
W,H

C(W,H) subject to wki, hin > 0 (2)

with
C(W,H) ≡ L(V,U), (3)

where L is a loss function that assesses the error between V
and its low-rank approximation U.

A. β-Divergence

The loss from (3) can be expressed by means of a contrast
or distance function between the elements of V and U. Due
to its robustness with respect to outliers for certain values of
the input parameter β ∈ R [13], we resort to the β-divergence

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

[12] as a subclass of the Bregman divergence [14], [15], which
for the points p > 0 and q > 0 is given by [15]

dβ(p, q) =
p
pβ−1 − qβ−1

β − 1
− pβ − qβ

β
if β 6∈ {0, 1},

p log
p

q
− p+ q if β = 1,

p

q
− log

p

q
− 1 if β = 0.

(4)

Accordingly, the β-divergence between two matrices, V and
U, is defined entrywise as

Dβ(V ‖ U)
def
=

K∑
k=1

N∑
n=1

dβ(vkn, ukn) (5a)

with
ukn =

∑
i
wki hin. (5b)

Note that the Dβ has a single global minimum in vkn =∑
i wki hin, ∀k, n, although strict convexity for dβ is granted

only in the second argument for β ∈ [1, 2] [15], [16].

B. Multiplicative Factor Updates

Given that (4) is continuously differentiable and that the first
derivative is monotonically decreasing or increasing if q < p
or q > p, respectively, we can use gradient descent to find the
minimum of (5). Holding W or H fixed, the iterative update
of the variable factor X (H or W) at iteration t reads

Xt+1 = Xt − µ∇C
(
Xt, ·t

)
, t > 0. (6)

Splitting the gradient in components with opposite signs,

∇C
(
Xt, ·t

)
= ∇C+

(
Xt, ·t

)
−∇C−

(
Xt, ·t

)
, (7)

and extending the step size µ to a matrix that changes with t,

µt
def
= Xt ◦

[
∇C+

(
Xt, ·t

)]◦−1
, (8)

(6) can be converted to a multiplicative form [1], [2]:

Xt+1 = Xt ◦
[
∇C+

(
Xt, ·t

)]◦−1 ◦ ∇C−(Xt, ·t
)
, (9)

where ◦ denotes the Hadamard, i.e. entry-wise product, and
·◦−1 stands for the entry-wise inverse. The step size is chosen
in such a way as to ensure nonnegativity of the factor updates
on the assumption that they were initialized with nonnegative
values [9], [16].

C. Discrete Convolution in 2D

As can be seen from (5b), the weight wki for the ith variable
hi in column n is applied using the scalar product. Should hi
evolve with n, we can assume that the current state (or value)
of hi is correlated with its past and future states. We can take
this into account by replacing the scalar product in our model
by a convolution. Postulating causality and letting the weight

wki have finite support of cardinality M , convolution along n
writes

M−1∑
m=0

wkim hi,n−m
def
= (wki ∗ hi)n (10a)

with
wki =

[
wki,0 wki,1 · · · wki,M−1

]
(10b)

and
hi =

[
hi,n hi,n−1 · · · hi,n−M+1

]
. (10c)

The operation can be converted to a matrix multiplication by
lining up the states hT

i for n = 0, 1, . . . , N − 1 in a truncated
Toeplitz matrix:

Hi =

hi,0 hi,1 · · · hi,N−1
0 hi,0 · · · hi,N−2
...

...
. . .

...
0 0 · · · hi,N−M

. (11)

Using (10) and (11), V can now be approximated as

U =

I∑
i=1

(Wi ∗ hi)n =

I∑
i=1

WiHi (12a)

with
Wi =

[
wT

1,i wT
2,i · · · wT

K,i

]T
. (12b)

In practice, I can be quite large and M is usually small. It is
therefore convenient to rewrite (12) as, see [5], [6]:

U =
M−1∑
m=0

WmH m−→ with Wm =
[
wki·

]
m

, (13)

where · m−→ is a column-wise right-shift operation that shifts
all the columns of H by m positions to the right, and fills the
vacant positions with zeros. The operation is size-preserving.
It can be seen that the convolutional NMF (CNMF) has M
times as many weights as (1), whereas the number of hidden
variables is equal.

The convolution can be augmented by another dimension
[9], which can be formulated as

L−1∑
l=0

M−1∑
m=0

wk−l,im hli,n−m
def
= (Wi ∗ ∗Hi)kn (14a)

with

Wi =

wk,i,0 · · · wk,i,M−1
wk−1,i,0 · · · wk−1,i,M−1

...
. . .

...
wk−L+1,i,0 · · · wl−L+1,i,M−1

 (14b)

and

Hi =

h0,i,n · · · h0,i,n−M+1

h1,i,n · · · h1,i,n−M+1

...
. . .

...
hL−1,i,n · · · hL−1,i,n−M+1

. (14c)

Using the notation from (13), the convolutional data model for

2019 27th European Signal Processing Conference (EUSIPCO)

(14) in two dimensions can be written as

U =
L−1∑
l=0

M−1∑
m=0

l↓WmHl m−→ with Hl =
[
h·in

]
l

(15)

and Wm as in (13). From (15) one can see that the CNMF
in two dimensions has L times as many hidden variables as
(13). Analogous to the right-shift operator, l↓· is a row-wise
down-shift operator.

D. Uniqueness and Normalization
It is understood that the factorization is not unique. This

can be shown easily by the equivalence

U ≡
L−1∑
l=0

M−1∑
m=0

l↓WmBB−1 Hl m−→ (16)

with Wm ←WmB and Hl ← B−1 Hl, for any B ∈ RI×I
that has an inverse. Nonnegativity still holds for Wm and Hl

if B is a nonnegative diagonal matrix. The property is usually
used to enforce the same p-norm on the matrices {Wi}:

B = diag
(
‖W1‖−1p , ‖W2‖−1p , . . . , ‖WI‖−1p

)
(17)

with

‖Wi‖p
def
=

(
K∑
k=1

M∑
m=1

wpkim

)1/p

. (18)

III. β-CNMF IN 2D
Following up the considerations from Section II, we adopt

the data model from (15) and derive multiplicative updates
with the entrywise β-divergence from (5) as the loss function.
The outcome is a β-CNMF [8] in two dimensions. A summary
of the derivation follows.

A. Derivation
With ukn =

∑
l,i,m wk−l,im hli,n−m, p ∈ {1, 2, . . . ,K},

q ∈ {1, 2, . . . , I}, and r ∈ {0, 1, . . . ,M − 1}:
∂Dβ(V ‖ U)

∂wpqr
=
∑

k,n

∂dβ(vkn, ukn)

∂ukn
· ∂ukn
∂wpqr

=
∑

k,n

(
uβ−1kn − vkn u

β−2
kn

)∑
l
δ(p− k + l)hlq,n−r

=
∑

l,n

(
uβ−1p+l,n − vp+l,n u

β−2
p+l,n

)
hlq,n−r, (19)

where δ is the Kronecker delta function. Choosing µ in (6) as
(8) and using (19) in (9) leads to the update rule for Wm:

Wt+1
m = Wt

m ◦
[∑

l
l↑Ut◦(β−1) Ht

l
T
m−→

]◦−1
◦
∑

l

[
l↑V ◦ l↑Ut◦(β−2)

]
Ht
l
T
m−→, (20a)

where l↑· is the up-shift operator. The update rule for Hl can
be derived in similar fashion [17], resulting in

Ht+1
l = Ht

l ◦
[∑

m
l↓Wt

m
T
Ut◦(β−1)

m←−

]◦−1
◦
∑

m
l↓Wt

m
T
[
V m←− ◦U

t◦(β−2)
m←−

]
, (20b)

where · m←− is the left-shift operator, respectively.

B. Relation to Schmidt and Mørup’s work

In [9], multiplicative updates are derived for a CNMF in 2D
with either the (squared) Euclidean distance or the Kullback–
Leibler divergence as cost function. In the dimension of time,
their updates are the same as ours for β = 2. For β = 1, there
is however the difference that the U-matrix in the first line of
(20a) and (20b) is not shifted, neither up nor to the left. The
error is that δ in (19) is 1 in their derivation, which is true if
and only if k = p+ l.

C. Proof of Convergence

To prove that the (entrywise) β-divergence is nonincreasing
under the convolutional update rules given in (20), we resort
to the methodology used in [2], [16].

Definition 1: G : RL×I×N>0 ×RL×I×N>0 → R>0 is an auxiliary
function for F : RL×I×N>0 → R>0 if and only if

G(H,H) = F (H) (21a)

and
G(H′,H) > F (H′). (21b)

At iteration t+ 1, any Ht+1 satisfying

G
(
Ht+1,Ht

)
6 G

(
Ht,Ht

)
(22)

also satisfies
F
(
Ht+1

)
6 F

(
Ht
)
, (23)

because

F
(
Ht+1

)
6 G

(
Ht+1,Ht

)
6 G

(
Ht,Ht

)
= F

(
Ht
)
. (24)

Theorem 1: Let wkim > 0 and hlin > 0, where ukn =∑
l,i,m wk−l,im hli,n−m. Then,

G(H′,H) =∑
k,n

∑
l,i,m

wk−l,im hli,n−m
ukn

d^

(
vkn, ukn

h′li,n−m
hli,n−m

)
+ d_(vkn, ukn)

+ ḋ_(vkn, ukn)
∑
l,i,m

wk−l,im
(
h′li,n−m − hli,n−m

)
+ d−(vkn, ukn) (25)

with ḋ_
def
= ∂d_/∂ukn is an entrywise auxiliary function for

F (H) =
∑
kn

dβ

vkn,∑
l,i,m

wk−l,im hli,n−m

, (26)

where

dβ(p, q) = d^(p, q) + d_(p, q) + d−(p, q) (27)

represents a convex-concave-constant decomposition of the β-
divergence w.r.t. q.

It is trivial to show that (21a) is met. Given (27), (26) can
be decomposed as

F (H) = F^(H) + F_(H) + F−(H). (28)

2019 27th European Signal Processing Conference (EUSIPCO)

Since G−(H′,H) = F−(H
′) for any H, what is left to do is

to prove (21b) for the convex and the concave component.
Proof: First, comparing (25) and (28), define

G^(H′,H) =∑
k,n

∑
l,i,m

wk−l,im hli,n−m
ukn

· d^
(
vkn, ukn

h′li,n−m
hli,n−m

) (29)

as an entrywise auxiliary function for F^(H′). Introduce

alim =
wk−l,im hli,n−m

ukn
, (30)

so that
∑
l,i,m alim = 1. Using Jensen’s inequality, it is easy

to show that

G^(H′,H)

=
∑
k,n

∑
l,i,m

alim d^

(
vkn,

wk−l,im h
′
li,n−m

alim

)

>
∑
k,n

d^

vkn,∑
l,i,m

alim
wk−l,im h

′
li,n−m

alim

=
∑
k,n

d^

vkn,∑
l,i,m

wk−l,im h
′
li,n−m

= F^(H′).

(31)

Now, consider the first-order Taylor series of F_(H′) about H
as an (entrywise) auxiliary function G_(H′,H) for F_(H′),

G_(H′,H) = F_(H) +
∑
l,i,n

∂F_(H)

∂hlin
(h′lin − hlin). (32)

Eq. (32) fulfills condition (21a) by definition and also (21b),
because the tangent to F_(H′) at H is an upper bound of
F_(H′). Given that

∂F_(H)

∂hliq
=∑

k,n

ḋ_(vkn, ukn)
∑
m

wk−l,im δ(q − n+m),
(33)

where δ is the Kronecker delta function, the auxiliary function
for the concave component reads

G_(H′,H) =∑
k,n

d_(vkn, ukn) +
∑
k,n

ḋ_(vkn, ukn)

·
∑
l,i,m

wk−l,im
(
h′li,n−m − hli,n−m

)
.

(34)

Having shown that G(H′,H) is an auxiliary function for the
entrywise β-divergence F (H′) associated with a convolutional
data model, using (25) we can now go about showing that the
update rules in (20) satisfy (23) via (22).

Lemma 1: G(H′,H) is an entrywise auxiliary function for
F (H′) that for all β ∈ R can be written as

G(H′,H) =
∑
l,i,n

G(h′lin, hlin) + const (35)

with

G(h′lin, hlin) =

hlin
∑
k,m

wk−l,im
uk,n+m

d^

(
vk,n+m, uk,n+m

h′lin
hlin

)
(36)

+ (h′lin − hlin)
∑
k,m

wk−l,im ḋ_(vk,n+m, uk,n+m).

Theorem 2: For any β ∈ [0, 2], the convolutional update
rules in (20) satisfy (22).

Proof: Using the decomposition of the β-divergence from
[16, Table 1] in (36), we can express the difference between
G(hinl, hinl) and G(h′inl, hinl) for h′inl according to (20b)
piecewise as

G(hlin, hlin)−G(h′lin, hlin) = d^(h′lin, hlin)

− d^(h′lin, h
′
lin)− ḋ_(h′lin, hlin) (h

′
lin − hlin) (37)

=

1

1−β h
β
lin

[
1− (1− ηlin)β − ηβlin

]
if β ∈ [0, 1),

hlin [ηlin log ηlin + (1− ηlin)] if β = 1,
1

β (β−1) h
β
lin

[
ηβlin − 1 + (1− ηlin)β

]
if β ∈ (1, 2],

where

ηlin =
h′lin
hlin

=

∑
k,m wk−l,im vk,n+m u

β−2
k,n+m∑

k,m wk−l,im u
β−1
k,n+m

. (38)

Evaluating the expression in the square brackets of each piece,
one can show that

1− (1− ηlin)β − ηβlin > 0 if β ∈ [0, 1),
ηlin log ηlin + (1− ηlin) > 0 if β = 1,

ηβlin − 1 + (1− ηlin)β > 0 if β ∈ (1, 2],

(39)

and thus

G(hlin, hlin)−G(h′lin, hlin) > 0 if β ∈ [0, 2], (40)

from which (22) follows directly via (35).
Reversing the roles of W and H, it can also be shown that

F (W′) is nonincreasing under the updates.

IV. SIMULATION

In this section, we simulate and assess the convergence of
the newly derived updates for 1× 103 iterations. To that end,
we generate 1×102 distinct V-matrices from M χ2-distributed
Wm-matrices,

wkim =
2∑
p=1

w2
kimp ∼ χ2

2 wkimp ∼ N (0, 1), (41)

and L uniformly distributed Hl-matrices,

hlin ∼ U(0, 1). (42)

2019 27th European Signal Processing Conference (EUSIPCO)

10
0

10
1

10
2

10
3

Iteration

10
-5

10
-4

10
-3

10
-2

10
-1

D
iv

er
g
en

ce
 = 0

10
0

10
1

10
2

10
3

Iteration

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 = 1

10
0

10
1

10
2

10
3

Iteration

10
-2

10
-1

10
0

10
1

10
2

 = 2

Fig. 1. Simulation results showing the mean and the standard deviation of the divergence between V and U.

We select M = L = 2. The factorization is repeated 1× 101

times, using random initializations of
{
Wt=0

m

}
and

{
Ht=0
l

}
with non-zero entries. So, the curves in Fig. 1 were computed
over ensembles of 1 × 103 costs at each iteration (step). The
number of visible variables and observations is K = 1× 101

and N = 2.5 × 101, while the number of hidden variables I
is 5× 100.

As can be seen from Fig. 1, the multiplicative updates are
stable (the entry-wise divergence is monotonically decreasing
w.r.t. both the mean and the standard deviation) and they also
are consistent across different values of β. The difference in
scale is because

dβ(p, q) ≡ pβ dβ
(
1,
q

p

)
, (43)

which evinces that only the Itakura–Saito divergence (β = 0)
is scale invariant. In addition, we measured the run time as a
function of the β-value on an Intel Xeon E5-2637 v3 CPU at
3.5 GHz with 16 GB of RAM. For β = 0, one iteration takes
about 1.41 times longer than for β = 2, whereas for β = 1 an
iteration takes only a factor of 1.05 longer. The convergence
curves have a similar trajectory for different values of K, N ,
and I . Our reference code can be downloaded from [18].

V. CONCLUSION

In summary, this paper extends our previous work on the
β-CNMF to two dimensions. The β-CNMF in 2D corrects and
generalizes the (2D) nonnegative matrix factor deconvolution
by Schmidt and Mørup. By a formal proof and via numerical
simulation it was validated that the new updates are stable and
that their convergence behavior is consistent.

REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of objects by nonnegative
matrix factorization,” Nature, vol. 401, pp. 788–791, 1999.

[2] ——, “Algorithms for non-negative matrix factorization,” in NIPS 2001,
2001, pp. 556–562.

[3] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,”
Environmetrics, vol. 5, no. 2, pp. 111–126, 1994.

[4] P. Paatero, “Least squares formulation of robust non-negative factor
analysis,” Chemom. Intell. Lab. Syst., vol. 37, no. 1, pp. 23–35, 1997.

[5] P. Smaragdis, “Non-negative matrix factor deconvolution; extraction of
multiple sound sources from monophonic inputs,” in ICA 2004, 2004,
pp. 494–499.

[6] ——, “Convolutive speech bases and their application to supervised
speech separation,” IEEE Trans. Audio, Speech, Language Process.,
vol. 15, no. 1, pp. 1–12, 2007.

[7] W. Wang, A. Cichocki, and J. A. Chambers, “A multiplicative algorithm
for convolutive non-negative matrix factorization based on squared
Euclidean distance,” IEEE Trans. Signal Process., vol. 57, no. 7, pp.
2858–2864, 2009.

[8] P. J. Villasana T., S. Gorlow, and A. T. Hariraman, “Multiplicative
updates for convolutional NMF under β-divergence,” Optim. Lett., May
2019. [Online]. Available: https://doi.org/10.1007/s11590-019-01434-9

[9] M. N. Schmidt and M. Mørup, “Nonnegative matrix factor 2-D decon-
volution for blind single channel source separation,” in ICA 2006, 2006,
pp. 700–707.

[10] M. Sun, Y. Li, J. F. Gemmeke, and X. Zhang, “Speech enhancement
under low SNR conditions via noise estimation using sparse and low-
rank NMF with Kullback–Leibler divergence,” IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 23, no. 7, pp. 1233–1242, 2015.

[11] E. L. Mackevicius, A. H. Bahle, A. H. Williams, S. Gu, N. I.
Denisenko, M. S. Goldman, and M. S. Fee, “Unsupervised discovery
of temporal sequences in high-dimensional datasets, with applications
to neuroscience,” eLife, vol. 8, Feb 2019. [Online]. Available:
https://doi.org/10.7554/eLife.38471

[12] A. Basu, I. R. Harris, N. L. Hjort, and M. C. Jones, “Robust and efficient
estimation by minimising a density power divergence,” Biometrika,
vol. 85, no. 3, pp. 549–559, 1998.

[13] M. Mihoko and S. Eguchi, “Robust blind source separation by beta
divergence,” Neural Comput., vol. 14, no. 8, pp. 1859–1886, 2002.

[14] L. M. Bregman, “The relaxation method of finding the common point
of convex sets and its application to the solution of problems in convex
programming,” USSR Comput. Math. & Math. Phys, vol. 7, no. 3, pp.
200–217, 1967.

[15] A. Cichocki and S.-i. Amari, “Families of alpha- beta- and gamma-
divergences: Flexible and robust measures of similarities,” Entropy,
vol. 12, no. 6, pp. 1532–1568, 2010.

[16] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization
with the β-divergence,” Neural Comput., vol. 23, no. 9, pp. 2421–2456,
2011.

[17] P. J. Villasana T., “New variants of nonnegative matrix factorization
with application to speech coding and speech enhancement,” Master’s
thesis, KTH, School of Electrical Engineering and Computer Science
(EECS), 2019. [Online]. Available: http://kth.diva-portal.org/smash/
record.jsf?pid=diva2%3A1324307

[18] P. Villasana and S. Gorlow, “MATLAB code for beta-convolutional
nonnegative matrix factorization in 2D,” Mar 2019. [Online]. Available:
https://doi.org/10.24433/CO.7116855.v1

2019 27th European Signal Processing Conference (EUSIPCO)

