
Separation of independent/dependent sources using
copulas

N. Mamouni
LMR FRE 2011 CNRS, LAMAI

URCA, UCA
Reims, France

nezha.mamouni@gmail.com

H. Fenniri
CReSTIC

URCA
Reims, France

hasiri51@gmail.com

A. Ghazdali
LIPIM

ENSA, USMS
Khouribga, Maroc

a.ghazdali@gmail.com

A. Hakim
LAMAI

FST, UCA
Marrakech, Maroc

abdelilah.hakim@gmail.com

A. Keziou
LMR FRE 2011 CNRS

URCA
Reims, France

amor.keziou@univ-reims.fr

Abstract—In this paper, we introduce a new convolutive blind
source separation approach for independent/dependent source
components. The proposed approach represents an efficient tool
for separating linear convolutive mixing models, especially, when
the source components are statistically dependent. Its efficiency
is illustrated by some simulation results.

Index Terms—Blind source separation, Kullback-Leibler di-
vergence, Copulas, Dependent source components.

I. INTRODUCTION

Convolutive blind source separation (BSS) problem is a
fundamental issue in applications of many different fields
such as feature extraction [1], [2], radio communications [3],
acoustical surveillance [10], etc. Convolutive (BSS) aims to
recover unobserved signals from linear convolutive mixtures
of them, where there is no, or very limited, information about
the original source signals or the mixing system. In convolutive
mixing models, the mixing process is quite complicated. Each
observation is a sum of many different weighted and delayed
source signals, i.e., we take into account the propagation of
each source to different sensors in the medium. In other words,
for arriving to the different sensors, each source passes through
different transfer functions.

In literature, several methods have been proposed for sep-
arating this kind of mixtures such as [11], [12], [13], [14]
which are based on independent component analysis (ICA),
assuming that the source signals are statistically independent
[4]. Under the standing boundedness condition of the source
signals, authors in [15], [16] have developed some geometric
methods replacing the statistical independence assumption
with a geometric type condition on the source signal samples,
see condition (A1) in [15], [16]. Frequency-domain methods
have been also developed for separating convolutive mixtures
using a short-time-Fourier transform (STFT), and applying
standard tools of instantaneous blind source separation to each
of the STFT channels, see e.g. [16], [17]. In [6], [18] Keziou
et al proposed a new approach that enables separation of
independent/dependent source components from their linear
instantaneous mixtures (up to scale and permutation inde-
terminacies). In this approach, a statistical concept, namely
copulas, was introduced to model the dependency structure of
the source components. A solution to the separation problem
was obtained by minimizing the Kullback-Leibler divergence

between the copula density of the estimated source compo-
nents and the copula density of the source components. Since
in many applications, a model of linear instantaneous mixtures
is unsuitable, we propose, in this paper, a new blind source
separation approach that provides an efficient solution for
the separation of convolutive mixtures for both independent
and dependent source components (up to a permutation and
filtering indeterminacies). This paper extends the instantaneous
approach introduced in [6] for the convolutive BSS problem.
We have extended the objective functions proposed in [6] to
cover the more general case where the observed signals are
convolutive mixtures of the sources. The proposed approach
consists of minimizing a new estimated separation criterion
based on the Kullback-Leibler divergence between copula
densities. For clarity, we will treat separately the case of
independent source components, then the case of dependent
source components.

II. PRINCIPLE OF CONVOLUTIVE BLIND SOURCE
SEPARATION

Suppose that we have p observed signals x1(t), · · · , xp(t)
which are assumed to be linear convolutive mixtures of p
source signals s1(t), · · · , sp(t). In this framework, the mixing
system is composed of linear filters which can be mathemati-
cally modeled by

xi(t) :=

p∑
j=1

aij(t) ∗ sj(t) + bi(t), ∀i = 1, . . . , p, (1)

where “*” is the convolution operator, and aij(t) is the
impulse response from the j-th source to the i-th sensor. The
model (1) can be also written in its matrix form as

x(t) = A(t) ∗ s(t) + b(t), (2)

where A(t) is the unknown matrix of linear filters that groups
the impulse responses aij(t),
s(t) := (s1(t), · · · , sp(t))> ∈ Rp is the unknown vector of
sources to be estimated, x(t) := (x1(t), · · · , xp(t))> ∈ Rp
represents the observed vector signal at time t and b(t) is an
additive noise vector. We assume that the noise is reduced by
applying some form of preprocessing such as denoising the
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observed signals through regularization approach, see e.g. [5].
We then write

x(t) = A(t) ∗ s(t). (3)

Note that here the number of source components is assumed
to be equal to the number of observed ones. Assuming that
the filters of A(t) can be modeled by causal finite impulse
response (FIR) ones, with maximum degree L < ∞, the
transposition, into the discrete time domain, of model (2) gives

x(n) = [A(z)]s(n) =
L∑
k=0

Ak s(n− k), ∀n = 1, . . . , N, (4)

where A = {A0, . . . ,AL} are finite impulse response (FIR)
filters with maximum degree L. Notice that Ak are p × p
matrices for all k = 0, . . . , L. Assume additionally that A(z)
is minimum phase, see e.g. [24]. We have then the existence
of unique inverse causal filter A(z)−1 of A(z). We suppose
also that A(z)−1 is FIR filter, or can be approximated by
a FIR filter, with degree L. Under the above assumptions,
and due to the form of mixtures (4), the estimated sources
can be obtained by applying a linear filtering on the observed
mixtures (4), taking the form

y(n) := [B(z)]x(n) =

L∑
k=0

Bk x(n− k), ∀n = 1, . . . , N,

(5)
where B = {B0, . . . ,BL} are finite impulse response (FIR)
filters with the same degree L, and Bk are p × p matrices
for all k = 0, . . . , L. If the source components are statistically
independent, [12] proved that the filter matrix B̂, making the
components of [B̂(z)]x(n) independent (in terms of stochastic
process to be specified in subsection IV-A below), leads to
the source separation (accurate estimates ŷ(n) of the source
signals up to a permutation and a filtering indeterminacies),
i.e.,

ŷ(n) := [B̂(z)]x(n) = [B̂(z)A(z)]s(n), (6)

where the filter matrix B̂(z) satisfies [B̂(z)A(z)] = PH(z),
with P a permutation and H a filtering operator. In the
following, we will deal with the convolutive blind source
separation problem in order to separate, using “copulas”, not
only independent source components but also dependent ones.
For clarity, we will study separately, the case where the source
components are independent in Section IV-A, and the case
where they are dependent in Section IV-B.

III. BRIEF RECALL ON COPULAS

We give the following brief recall on copulas. The concept
of copula was introduced by Sklar in [7] as a function
which couples a joint distribution function with its univariate
margins. Consider a random vector Y := (Y1, . . . , Yp)

> ∈
Rp, p ≥ 2, with joint distribution function (d.f.)

FY (·) : y ∈ Rp 7→ FY (y) := FY (y1, . . . , yp)

:= P(Y1 ≤ y1, . . . , Yp ≤ yp),
(7)

and continuous marginal d.f.’s

FYi
(·) : yi ∈ R 7→ FYi

(yi) := P(Yi ≤ yi), ∀i = 1, . . . , p.
(8)

Sklar characterization theorem [7] ensures the existence of a
unique function CY (·) : [0, 1]p → [0, 1] such that ∀y :=
(y1, . . . , yp)

> ∈ Rp

FY (y) = CY (FY1(y1), . . . , FYp(yp)). (9)

The function CY (·) is called a copula and it is a joint
d.f. on [0, 1]p with uniform marginals. We have ∀u =
(u1, . . . , up)

> ∈ [0, 1]p,

CY (u) = P(FY1(Y1) ≤ u1, . . . , FYp(Yp) ≤ up).

Conversely, for any marginal d.f.’s F1(·), . . . , Fp(·), and any
copula function C(·), the function C(F1(·), . . . , Fp(·)) is a
multivariate d.f. on Rp. On the other hand, since the marginal
d.f.’s FYj

(·), j = 1, . . . , p, are assumed to be continuous,
then the random variables FY1

(Y1), . . . , FYp
(Yp) are uniformly

distributed on the interval [0, 1]. Therefore, if the components
Y1, . . . , Yp are statistically independent, then the correspond-
ing copula is

CY (u) =

p∏
i=1

ui =: C0(u), ∀u ∈ [0, 1]p. (10)

It is called the copula of independence. Define, if it exists, the
copula density of the random vector Y by

cY (u) :=
∂pCY (u)

∂u1 · · · ∂up
, ∀u ∈ [0, 1]p. (11)

Then, the copula density of independence, denote it by c0(·),
is the function taking the value 1 on [0, 1]p and zero otherwise,
namely,

c0(u) := 1[0,1]p(u), ∀u ∈ [0, 1]p. (12)

Let fY (·), if it exists, be the probability density on Rp of
the random vector Y := (Y1, . . . , Yp)

>, and, respectively,
fY1

(·), . . . , fYp
(·), the associated marginal probability densi-

ties. Then, for all y := (y1, . . . , yp)
> ∈ Rp, we have

fY (y) =

(
p∏
i=1

fYi
(yi)

)
cY (FY1

(y1), . . . , FYp
(yp)). (13)

Combining the relations (10-13), one can show that

cY (u) = c0(u), ∀u ∈ [0, 1]p

if and only if (iff) the components of the vector Y are
independent. We can refer to [8], [19] for more details on
copula theory.

IV. CONVOLUTIVE BSS FOR INDEPENDENT/DEPENDENT
SOURCES VIA COPULAS

Let Y = (Y1, . . . , Yp)
> ∈ Rp be any random vector with

continuous marginal distribution functions FY1
(·), . . . , FYp

(·).
It has been shown in [6] that the Mutual Information (MI) of
Y can be written as the Kullback-Leibler divergence between
the copula density cY of the vector Y and the copula density
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c0 of independence. In fact, using the relation (13), one can
write

MI(Y ) :=

∫
Rp

log

 fY (y)
p∏
i=1

fYi(yi)

 fY (y) dy

=

∫
[0,1]p

log

(
cY (u)

1

)
cY (u) du

=

∫
[0,1]p

log

(
cY (u)

c0(u)

)
cY (u) du (14)

=: KL (cY , c0)

= E
[
log
(
cY (FY1

(Y1), . . . , FYp
(Yp))

)]
,

where E[·] denotes the mathematical expectation. The integral
in (14) is, by definition, the Kullback-Leibler divergence
between cY and c0. Recall that KL (cY , c0) is nonnegative,
and

KL (cY , c0) = 0 iff cY (u) = c0(u), ∀u ∈ [0, 1]p, (15)

which is equivalent with the fact that the components of the
vector Y are independent.

A. Independent source components

In this subsection, we give a solution to the BSS prob-
lem for convolutive mixtures of independent source compo-
nents in the context of copulas. We will use the follow-
ing statistical approach. For any delay-integer-vector q :=
(q1 = 0, q2, . . . , qp)

> ∈ {0} × {−2L, . . . , 2L}p−1, we
will consider that the delayed source signal sq(n) :=
(sq11 (n), . . . , s

qp
p (n))> := (s1(n− q1), . . . , sp(n− qp))>, n =

1, . . . , N, are N i.i.d realizations of a random vector Sq :=
(Sq11 , . . . , S

qp
p )> ∈ Rp. Likewise, we consider that the de-

layed estimated signal yq(n) := (yq11 (n), . . . , y
qp
p (n))> :=

(y1(n − q1), . . . , yp(n − qp))
>, n = 1, . . . , N, are N real-

izations of random vector Y q := (Y q11 , . . . , Y
qp
p )> for all

q := (q1 = 0, q2, . . . , qp)
> ∈ {0}×{−2L, . . . , 2L}p−1. Since

we deal with convolutive mixtures, it is easy to show that
the independence between two scalar random sources y1(n)
and y2(n) for all n is not sufficient to separate the signals.
The independence of the components y1(n1) and y2(n2) is
needed for all n1 and n2. In other words, the independence of
y1(n) and y2(n− k) for all n and at all delay k, is necessary
to achieve separation, see e.g. [20]. We propose then the
following separation criterion

B 7→ Jind(Y q) :=
∑
q

KL (cY q , c0)

=
∑
q

E
[
log
(
cY q (FY q1

1
(Y q11 ), . . . , FY qp

p
(Y qpp ))

)]
, (16)

where KL (cY q , c0) is the Kullback-Leibler divergence be-
tween the copula density of the vector Y q and the cop-
ula density of independence c0. In view of property (15),
KL (cY q , c0) is nonnegative and achieves its minimum value
zero iff the components of Y q are independent. To estimate

the p× p dimension matrices Bk,∀k = 0, . . . , L, we propose
to minimize with respect to B a statistical estimate Ĵind(Y q)
of Jind(Y q) constructed from the data yq(1), . . . ,yq(N). We
obtain then the following separation filter

B̂ := arg inf
B
Ĵind(Y q), (17)

which leads to the estimated sources

ŷ(n) =
L∑
k=0

B̂k x(n− k), ∀n = 1, . . . , N. (18)

Using (16), Jind(Y q) can be estimated via a “plug-in” type
procedure, as follows

Ĵind(Y q) :=
∑
q

1

N

N∑
n=1

log ĉY q (F̂Y q1
1

(y1(n− q1)), . . . ,

F̂Y qp
p

(yp(n− qp))), (19)

where ∀u ∈ [0, 1]p,

ĉY q (u) :=
1

NH1 · · ·Hp

N∑
m=1

p∏
j=1

k

 F̂Y qj
j

(y
qj
j (m))− uj
Hj

 ,

(20)
is the kernel estimate of the copula density cY q (·) and

F̂
Y

qj
j

(x) :=
1

N

N∑
m=1

K

(
y
qj
j (m)− x

hj

)
, j = 1, . . . , p,

is the smoothed estimate of the marginal distribution function
F
Y

qj
j

(·) of the random variable Y qjj , at any real value x ∈ R,
K(·) is the primitive of a kernel k(·), a symmetric centered
probability density. In our forthcoming simulation study, we
will use the triangular kernel k(x) = (1−|x|)1[−1,1](x),∀x ∈
R. We choose the parameters H1, . . . ,Hp and h1, . . . , hp
according to Silverman’s rule of thumb [9], i.e., for all
j = 1, . . . , p, we take

Hj =

(
4

p+ 2

) 1
p+4

N
−1
p+4 Σ̂j , hj =

(
4

3

) 1
5

N
−1
5 σ̂j ,

Σ̂j and σ̂j are, respectively, the empirical standard
deviation of the data F̂

Y
qj
j

(y
qj
j (1)), . . . , F̂

Y
qj
j

(y
qj
j (N))

and y
qj
j (1), . . . , y

qj
j (N). To compute the minimizer in B of

(17), we use a gradient descent algorithm.

Remark 1: We notice that the computational load of
the proposed algorithm increases with L and p. However,
we can use the following “stochastic” implementation of
our proposed algorithm: at each iteration, we randomly
choose a delay q from the set {0} × {−2L, . . . , 2L}p−1

and we take KL (cY q , c0) as the current criterion instead of∑
qKL (cY q , c0).
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B. Dependent source components

In this subsection, we describe our approach of BSS for
possible dependent source components. When the source
components are dependent, we assume that we have some
prior information about the copula density of the random
source vector S. Note that this is possible for many
practical problems. It can be done, from realizations of the
random vector source S, by a model selection procedure in
semiparametric copula density models {cθ(·); θ ∈ Θ ⊂ R},
typically indexed by a univariate parameter θ, see e.g.
[21]. The parameter θ can be estimated using maximum
semiparametric likelihood, see e.g. [22], [23]. Denote by θ̄ the
obtained value of θ and cθ̄(·) the copula density describing
the dependency structure of the source components. Let Q :=
{q ∈ {−2L, . . . , 2L}p s.t. q1 = 0, qi 6= 0, ∀i = 2, . . . , p, and
qi 6= qj , ∀i 6= j} . Since the components of the random vector
Sq := (Sq11 , . . . , S

qp
p )> are independent when q ∈ Q, and the

components of S are dependent with copula density cθ̄(·),
we propose the following separation criterion

B 7→ Jdep(Y q) := KL (cY , cθ̄) +
∑
q∈Q

KL (cY q , c0) , (21)

where KL (cY , cθ̄) is the Kullback-Leibler divergence, be-
tween the copula density of the vector Y and the copula
density of the source components, given by

KL (cY , cθ̄) :=

∫
[0,1]p

log

(
cY (u)

cθ̄(u)

)
cY (u) du

= E
[
log

(
cY (FY1

(Y1), . . . , FYp
(Yp))

cθ̄(FY1(Y1), . . . , FYp(Yp))

)]
.

(22)

The criterion function B 7→ Jdep(Y q) is nonnegative and
achieves its minimum value zero iff B = A−1 (up to filtering
and permutation indeterminacies), i.e.,

A−1 = arg inf
B
Jdep(Y q),

provided that, cθ̄(·), the copula density of S satisfies the
following assumption: for any regular filter matrix M(z),
if the copula density of [M(z)]S is equal to cθ̄(·), then
M(z) = PH(z), where P a permutation and H a filtering
operator. Notice that for the second term in (21), we have∑
q∈Q

KL (cY q , c0) = 0 if Y = [PH(z)]S. In fact, if

Y = [PH(z)]S, then Y q = [PH(z)]Sq, ∀q ∈ Q, because
PH(z) is diagonal. Therefore, the components of Y q are
independent ∀q ∈ Q, which follows from the independence
of the components of Sq, ∀q ∈ Q. Therefore, we propose the
following estimate of the separating filter

B̂ = arg inf
B
Ĵdep(Y q), (23)

where Ĵdep(Y q) is the statistical estimate, of the criterion
Jdep(Y q), defined by

Ĵdep(Y q) := K̂L (cY , cθ̄) +
∑
q∈Q

K̂L (cY q , c0)

:=
1

N

N∑
n=1

log

(
ĉY (F̂Y1(y1(n)), . . . , F̂Yp(yp(n)))

ĉθ̄(F̂Y1
(y1(n)), . . . , F̂Yp

(yp(n)))

)

+
∑
q∈Q

1

N

N∑
n=1

log(ĉY q (F̂Y q1
1

(y1(n− q1)), · · · ,

F̂Y qp
p

(yp(n− qp)))),

where the estimates of marginal distribution functions F̂Y qi
i

(·)
and copula density ĉY q (·) are defined as above. We obtain
then the following estimated sources

ŷ(n) =
L∑
k=0

B̂k x(n− k), ∀n = 1, . . . , N.

We compute the solution B̂ in (23), by a descent gradient
algorithm.

Remark 2: The criterion function (21) supposes the knowl-
edge of the copula density model of the source components
(with known parameter θ) which is possible, from training
samples of the random source vector S, by a model selection
procedure. However, in many real cases, we have not this
information about the source copula density model. Notice that
the proposed criterion (21) can be generalized to overcome
the more general cases, where the copula density model of
the source components and/or the associated parameter are
unknown, in a similar way as in [6], [18] for the instantaneous
mixtures.

V. SIMULATION RESULTS

In this section, we give some simulation results for the
proposed approach. We deal with convolutive mixtures (two
mixtures of two sources) of two kinds of sample sources:
uniform i.i.d. with independent components presented in Fig-
ure 1.a, i.i.d. (with uniform marginals) vector sources with
dependent components generated from Frank copula with
θ = 3.6 in Figure 2.a. All signals are centered and normalized.
For measuring the separation quality, we use the output SNRs
defined by

SNRi := 10 log10

(
E(y2

i )

E(y2
i |si=0)

)
, ∀i = 1, 2.

The obtained simulation results will be compared with those
obtained in [11] (MI method) under the same conditions, see
Figures 1-3. The used mixing system is

A(z) =

[
1 + 0.2z−1 + 0.1z−2 0.5 + 0.3z−1 + 0.1z−2

0.5 + 0.3z−1 + 0.1z−2 1 + 0.2z−1 + 0.1z−2

]
.

The gradient descent parameter is taken as µ = 0.08 in all
cases. We observe from Figures 1.a and 1.b that both methods,
the proposed and the MI ones, give good results for the
standard case of independent source components. Moreover,
we see, from Figure 2.a that our proposed method is able
to separate, with good performance, convolutive mixtures of
dependent source components. Figure 3.a presents the separa-
tion criterion K̂L (cY , cθ̄) for Frank copula. We can see from
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this figure that K̂L (cY , cθ̄) converge to 0 when the source
components are dependent unlike the MI method in Figure 3.b.
In summary, when the source components are independent,
both methods give equivalent results. However, when the
source components are dependent, the MI approach fails while
the proposed one is still working with good accuracy.

VI. CONCLUSION

We have proposed a new convolutive blind source separation
approach, by minimizing an appropriate separation criterion
on copulas, in order to separate linear convolutive mixtures of
independent/dependent source components.

(a) (b)
Fig. 1. SNRs vs iterations with independent sources: (a) The proposed
method, (b) The MI one.

(a) (b)
Fig. 2. Separation of dependent sources from Frank copula: (a) The proposed
method, (b) The MI one.

(a) (b)

Fig. 3. Separation of dependent sources from Frank copula: (a) K̂L (cY , cθ̄)
(b) The MI method.
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