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Abstract—Autoregressive modeling is a widespread parametric
spectrum estimation method. It is well known that, in the case
of stationary processes with unknown order, its accuracy can
be improved by averaging models of different complexity using
suitably chosen weights. The paper proposes an extension of this
technique to the case of multivariate locally stationary processes.
The proposed solution is based on local autoregressive modeling,
and combines model averaging with estimation bandwidth adap-
tation. Results of simulations demonstrate that the application of
the proposed decision rules allows one to outperform the standard
approach, which does not include the bandwidth adaptation.

Index Terms—spectral estimation, multivariate autoregressive
process, model averaging, final prediction error

I. INTRODUCTION

Spectrum estimation plays a pivotal role in signal process-

ing, because of its theoretical significance and importance

to countless applications. All existing spectrum estimation

methods can be assigned to one of the two basic classes.

Nonparametric estimators, predominantly different variants of

periodogram, usually rely on mild assumptions and therefore

offer robust, but only mediocre, accuracy. Model-based, or

parametric, methods are generally regarded superior to non-

parametric ones in terms of accuracy, albeit at the cost of

greater complexity and sensitivity to model mismatch.

Among parametric methods, the autoregressive (AR) model-

ing stands out due to its strong theoretical background, versa-

tility, accuracy, modest computational cost and wide range of

successful applications, of which many involve processing of

nonstationary signals. Recent advances in the statistical theory

of locally stationary processes confirm this long standing

observation [1] with rigorously derived analytical results.

One of the fundamental problems associated with AR ana-

lysis of nonstationary time series is that of selecting the

model order and the estimation bandwidth (related to the

local ana-lysis window width). Ideally, the model should

offer enough capacity to accommodate all spectral peaks

and notches while avoiding any superfluous parameters. The

estimation bandwidth, on the other hand, should be related to

the speed at which the changes of process parameters take

place. Both problems become particularly important in the

nonstationary case, because in many applications the optimal

order/bandwidth choices are time-dependent.

In this paper we propose a novel, partially collaborative

solution to the problem outlined above. A collaborative scheme

can be based on Bayesian-like model averaging using gener-

alized Akaike’s model likelihoods as weights. Unfortunately,

such a solution solves only of the problem of selecting the

model order. This is caused by the fact that, due to limitations

of the Akaike’s framework, model averaging can be carried out

only across models sharing the same estimation bandwidth.

In this paper, we propose a new final prediction error (FPE)

like criterion that allows one to combine model averaging

with bandwidth adaptation. When compared with the standard

solution, which employs constant bandwidth/order settings,

the proposed mixed collaborative-competitive estimator offers

superior performance.

The paper is organized as follows: Section 2 introduces

basic concepts behind modeling of nonstationary time series

using autoregressive models. Section 3 outlines the proposed

estimator. Section 4 presents results of statistical simulations.

Finally, Section 5 concludes.

II. MULTIVARIATE AUTOREGRESSIVE PROCESSES

A. Stationary multivariate autoregressive model

Consider m-variate discrete-time stationary vector autore-

gressive (VAR) process of order n

y(t) =

n
∑

i=1

Ai,ny(t− i) + εn(t) , (1)

where t = . . . , −1, 0, 1, . . . denotes dimensionless discrete

time, y(t) = [y1(t) y2(t) . . . ym(t)]
T

,

Ai,n =







ai,n11 . . . ai,n1m
...

...

ai,nm1 . . . ai,nmm






, i = 1, 2, . . . , n (2)

are m×m matrices of autoregressive coefficients and {εn(t)}
is m-variate zero mean white noise sequence with covariance

matrix ρn.

Let

θn = vec{[A1,n |A2,n | . . . | An,n]
T}

=
[

a1,n11 . . . a1,n1m . . . an,n11 . . . an,n1m . . .

a1,nm1 . . . a1,nmm . . . an,nm1 . . . an,nmm

]T
(3)
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denote the m2n-dimensional aggregate vector of process au-

toregressive coefficients. Furthermore, let

ϕn(t) =
[

yT(t− 1) yT(t− 2) . . . yT(t− n)
]T

Ψn(t) = Im ⊗ϕn(t) ,
(4)

where ⊗ denotes the Kronecker product and Im denotes the

m×m identity matrix. Using this notation, the recursion (1)

can be rewritten in the following form

y(t) = Ψ
T
n (t)θn + εn(t) , (5)

which will be used later extensively.

Let

An(z,θn) = Im −
n
∑

i=1

Ai,nz
−i , (6)

where z is a complex variable. A necessary and sufficient

condition that must hold for (1) to describe an asymptotically

stationary random process, is the stability of the autoregressive

model. This occurs if and only if all roots of the characteristic

polynomial det[An(z,θn)] are inside the unit circle in the Z-

plane. In such a case, the spectral density of the VAR process

can be expressed in the form

Sn(ω) = A
−1
n (ejω,θn)ρnA

−T
n (e−jω,θn) , (7)

where ω ∈ [−π, π) denotes the normalized angular frequency,

An(e
jω,θn) = An(z,θn)

∣

∣

z=ejω

and A
−T
n (e−jω,θn) = [A−1

n (e−jω,θn)]
T.

B. Locally stationary multivariate autoregressive process

Consider a nonstationary m-variate process governed by the

VAR model with time-varying coefficients

y(t) =
n
∑

i=1

Ai,n(t)y(t−i)+εn(t) , E[εn(t)ε
T
n (t)] = ρn(t) .

(8)

Under regularity conditions specified in [1], the process (8) is

locally stationary and its instantaneous spectral density

Sn(ω, t) = A
−1
n [ejω,θn(t)]ρn(t)A

−T
n [e−jω,θn(t)] , (9)

where

An[z,θn(t)] = Im −
n
∑

i=1

Ai,n(t)z
−i , (10)

is a well defined quantity in the rescaled time domain. In

this approach, the rescaled time, which spans a fixed-length

interval, is sampled uniformly on a grid that becomes finer as

the number of observations increases. Under such setting, the

instantaneous spectrum (9) can be interpreted as a spectrum

of a stationary process {y0(t)} “tangent” to {y(t)} at a point

of interest.

Without getting into mathematical details, we note that

in order to assure that the local stationarity conditions are

satisfied by the time-varying VAR model, it is sufficient to

assume that: 1. The parameters of the model have bounded

variation. 2. The model is uniformly stable, i.e., all roots of

the polynomial det{An[z,θn(t)]} remain strictly inside the

unit circle at all time instants t [1].

C. Basic local estimation technique

Suppose that a prerecorded data sequence consisting of T0

observations, Y = {y(1), y(2), . . . , y(T0)}, is available.

Local estimates of the time-varying VAR model parameters

can be obtained using the two-sided weighted least squares

(WLS) method.

The two-sided WLS method can be summarized as follows.

Denote by h(x) : R → [0, 1] a nonnegative “prototype”

weighting function with the support [−1, 1]. Typically, h(x) is

chosen to be a symmetric function with maximum at x = 0,

h(0) = 1, whose values decay smoothly towards 0 as x → ±1.

These conditions are satisfied by e.g. the Hann (raised-cosine)

window function

h(x) =

{

[1 + cos(πx)]/2 for x ∈ [−1, 1]
0 elsewhere

(11)

which is one of the standard choices in the nonparametric

spectral analysis due to the fact that it offers a good variance-

bias tradeoff.

Denote by k > 0, k ∈ Z a particular bandwidth setting.

The scaled weighting function hk(x) takes the form

hk(x) = h
(x

k

)

.

The WLS estimate θ̂n|k(t) of the parameter vector θn(t) is

defined as

θ̂n|k(t) = argmin
θn

T0
∑

τ=1

wt|k(τ)

∥

∥

∥

∥

∥

y(τ)−
n
∑

i=1

Ai,ny(τ − i)

∥

∥

∥

∥

∥

2

= argmin
θn

T0
∑

τ=1

wt|k(τ)
∥

∥

∥
y(τ)−Ψ

T
n (τ)θn

∥

∥

∥

2

, (12)

where ‖v‖2 = vTv denotes the squared Euclidean norm of

the vector v and

wt|k(τ) = hk(t− τ) . (13)

The corresponding estimate ρ̂n|k(t) of the driving noise co-

variance matrix ρn(t) can be obtained from

ρ̂n|k(t) =
1

Lk(t)

T0
∑

τ=1

wt|π(τ)
[

y(τ)−Ψ
T
n (τ)θ̂n|k(t)

]

×

[

y(τ)−Ψ
T
n (τ)θ̂n|k(t)

]T

,

(14)

where

Lk(t) =

T0
∑

τ=1

wt|k(τ) (15)

denotes the so-called effective window width.

Based on (9) and (12), the estimate of the instantaneous

power spectral density of the process {y(t)} reads

Ŝn|k(ω, t) = A
−1[ejω, θ̂n|k(t)]ρ̂n|k(t)A

−T[e−jω, θ̂n|k(t)] .
(16)

The main advantage of using the two-sided (noncausal)

WLS estimator, rather than its more frequently employed
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single-sided (causal) counterparts, such as the recursive least

squares estimator with exponential forgetting, is the reduction

of the bias caused by the phenomenon known as the estimation

delay – the output trajectory of a causal estimator can be

approximately regarded as a delayed version of the true

parameter trajectory [2]. This effect is usually negligible when

the two-sided technique is used.

III. MIXED COLLABORATIVE-COMPETITIVE APPROACH

The basic estimation technique will not be successful if it is

not supported by a suitable mechanism for choosing the model

order n and the estimation bandwidth parameter k. The former

should be chosen in accordance with the local spectral richness

of the analyzed signal, while the latter – in accordance with

the rate of the parameter variation.

When the optimal values of n and k are not known,

one can simultaneously run several WLS algorithms with

different order (N = {1, 2, . . . , N}) and bandwidth (K =
{k1, k2, . . . , kK}) settings and, at each time instant t, select

the locally best configuration {n̂(t), k̂(t)} out of NK choices.

However, such “hard” decision rules, regardless of their form

and complexity, cannot avoid the issue of the uncertainty

embedded in the decision process – even though the estimates

n̂(t) and k̂(t) are “most likely” to be the best choices of n
and k, there is always a chance that they differ from the actual

optimal choice.

The uncertainty factor can be accounted for within the

Bayesian framework. In this approach, the estimated quantities

are regarded as realizations of random variables with assigned

prior probability distributions. This leads to “soft” decision

rules, based on averaging.

Consider the problem of one step ahead prediction of a

stationary VAR process {y(t)} based on the available obser-

vation history Y(t) = {y(s), s ≤ t}. The optimal (in the

mean square sense) Bayesian predictor takes the form

ŷ(t+ 1|t) =
N
∑

n=1

µn(t)ŷn(t+ 1|t),
N
∑

n=1

µn(t) = 1 , (17)

where ŷn(t + 1|t) = Ψ
T
n (t + 1)θ̂n(t) denotes the prediction

based on the VAR model of order n, and µn(t) is the posterior

probability of n given Y(t).
To show that (17) indeed corresponds to model averaging,

consider augmenting (each) model of order n with N−n zero

autoregressive coefficients

Âp,n(t) = 0m×m, for p > n .

Observe that, in the vectorized form,

θ̂a
n(t) = vec{[Â1,n(t) |Â2,n(t) | . . . | ÂN,n(t)]

T} (18)

this operation can be expressed as

θ̂a
n(t) = Xn→N θ̂n(t) ,

where

Xn→N = Im ⊗

[

Inm
0(N−n)m×nm

]

. (19)

denotes the expansion matrix.

Using (18), one can express all one-step-ahead predictors

in the unified form

ŷn(t+ 1|t) = Ψ
T
N (t+ 1)θ̂a

n(t) ,

which leads in a straightforward way to the following form of

the Bayesian predictor

ŷ(t+ 1|t) = Ψ
T
N (t+ 1)θ̄N (t) ,

where θ̄N (t) is a convex combination of θ̂a
n(t), n =

1, 2, . . . , N

θ̄N (t) =
N
∑

n=1

µn(t)θ̂
a
n(t) . (20)

One can obtain the Bayesian estimate of the process noise

covariance matrix in the same way

ρ̄N (t) =
N
∑

n=1

µn(t)ρ̂n(t) . (21)

The estimates (20)-(21) characterize the “averaged” model, a

concept introduced by Akaike [3].

Akaike has shown that – under uniform, i.e., noninfor-

mative order priors – the posterior probabilities µn(t), n =
1, 2, . . . , N , called model likelihoods in [3], can be evaluated

using the formula

µn(t) ∝ exp

[

−
1

2
AICn(t)

]

,

where

AICn(t) = t log det ρ̂n(t) + 2m2n

denotes the Akaike’s information statistic.

The concept of model averaging was extended to WLS

models in [4]. For a fixed value of k, the corresponding model

averaging formula takes the form

θ̄N |k(t) =
N
∑

n=1

µn|k(t)θ̂
a
n|k(t)

ρ̄N |k(t) =
N
∑

n=1

µn|k(t)ρ̂n|k(t) , (22)

where

µn|k(t) ∝ exp

[

−
1

2
AICn|k(t)

]

AICn|k(t) = Lk(t) log det ρ̂n|k(t) + 2m2n
Lk(t)

Mk(t)
. (23)

The resulting power spectrum estimate

S̄N |k(ω, t) = A
−1[ejω, θ̄N |k(t)]ρ̄N |k(t)A

−T[e−jω, θ̄N |k(t)]
(24)

is known to be more accurate than the one resulting from the

classical AIC minimization procedure [4]

Ŝn̂(t)|k(ω, t) =

A
−1[ejω, θ̂n̂(t)|k(t)]ρ̂n̂(t)|k(t)A

−T[e−jω, θ̂n̂(t)|k(t)] , (25)

2019 27th European Signal Processing Conference (EUSIPCO)



Figure 1. Model morphing scenario adopted for simulation.

where

n̂(t) = arg min
n∈N

AICn|k(t) .

Note that (24) was obtained for a fixed value of k. Unfortu-

nately, it is not possible to extend the procedure outlined above

to joint averaging of models obtained for different order and

bandwidth settings (at least not within the information criterion

framework) – the model likelihoods µn|k(t) can be compared

only among models obtained for the same value of k .

To cope with this difficulty, we propose a mixed

collaborative-competitive approach, based on the following

spectral estimation formula

S̄
N |k̂(t)(ω, t) =

A
−1[ejω, θ̄

N |k̂(t)(t)]ρ̄N |k̂(t)(t)A
−T[e−jω, θ̄

N |k̂(t)(t)] , (26)

where k̂(t) is chosen so as to minimize the following FPE-like

statistic, whose full derivation is presented in [5]

k̂(t) = argmin
k∈K

FPEk(t)

FPEk(t) = tr
[

ρ̂nk(t)|k(t)
]

×




1 + m
Mk(t)

∑N

n=1

∑N

n′=1 µn|k(t)µn′|k(t)min(n, n′)

1− mnk(t)
Mk(t)





(27)

and

nk(t) = argmax
n=1,2,...,N

µn|k(t) .

IV. RESULTS OF STATISTICAL SIMULATIONS

To evaluate the proposed scheme, statistical simulation

experiments were performed. We generated, using the model

morphing technique, 100 realizations of a nonstationary pro-

cess with a known power spectrum. Model morphing was

realized based on three time-invariant autoregressive “anchor”

models M1, M2 and M3, with orders 2, 6 and 8, respectively,

obtained by means of identification of three different fragments

of a stereo audio recording.

The anchor models, estimated recursively using the

Lee-Morf-Friedlander least squares lattice filter [6], were

parametrized in terms of the matrices of the so-called nor-

malized reflection coefficients Qi,n, i = 1, . . . , n, rather than

in terms of the matrices of the autoregressive coefficients

Ai,n, i = 1, . . . , n, employed throughout the paper. The two

representations of an autoregressive model are known to be

equivalent [6]. However, out of these two, only reflection

coefficients allow one to implement the stability-preserving

model morphing.

Suppose that one intends to gradually pass from the model

M1, valid at the instant t1 and characterized by reflection

coefficients Q1
i,n, i = 1, . . . , n, to the model M2, valid at

the instant t2 and characterized by reflection coefficients

Q2
i,n, i = 1, . . . , n. This goal can be achieved by comput-

ing the intermediate reflection coefficients according to the

following convex combination rule

Qi,n(t) = α(t)Q1
i,n + [1− α(t)]Q2

i,n

i = 1, . . . , n, t ∈ [t1, t2]

where α(t) : [t1, t2] → [0, 1], α(t1) = 1, α(t2) = 0, is a

smoothly decreasing function of t. When the orders of the

morphed models are not identical, the nonexistent reflection

coefficients in the lower-order model are set to zero. The

resultant time-varying model is at all times stable.

The morphing scenario adopted for the purpose of this study

is depicted in Fig. 1.The following values were adopted: t0 =
0, t1 = 1500, t2 = 2000, t3 = 4000, t4 = 4500 and t5 =
6000.

We compared 60 baseline fixed order fixed bandwidth Hann-

windowed WLS algorithms, corresponding to twenty choices

of the model order (n ∈ {1, 2, . . . , 20}) and three choices of

the estimation bandwidth (k ∈ {300, 500, 800}), with three

partially adaptive solutions, which employ only the model

averaging technique, and the proposed mixed collaborative-

competitive scheme, based on the FPE statistic. For each

parially adaptive / fully adaptive case, twenty subvariants,

differing in the maximum model order N ∈ {1, 2, . . . , 20},

were implemented.

The performance of each spectrum estimator was evalu-

ated using the relative entropy rate (RER) [7], which is a

multivariate extension of the Itakura-Saito spectral distortion

measure. The results, obtained by combining the time aver-

aging (t ∈ [1000, 5000]) and the ensemble averaging (100

realizations), are summarized in Table I.

Observe that, in all cases the adaptive schemes yield a

considerably better performance than the baseline WLS al-

gorithms with fixed order and fixed bandwidth settings. For

model order equal to 8, which is a minimum model order that

can accommodate all spectral content of the process, model

averaging allows one to improve RER scores by approximately

10%. When the maximum model order is overestimated the

fixed order/fixed bandwidth algorithm experiences a substan-

tial degradation, while the partially adaptive solutions exhibits

a negligible penalty. The proposed approach allows one to

improve on these results by another 15% for an overall

accumulated improvement of 25% over the best nonadaptive

variant. Furthermore, inspection of the partial results obtained

for the individual realizations of the process shows that the

improvement is very consistent – better performance was

observed in all cases.
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Fixed order, fixed bandwidth Adaptive order, fixed bandwidth Fully adaptive

n/N k = 300 k = 500 k = 800 k = 300 k = 500 k = 800 FPE
1 1.6241 1.6238 1.6359 1.6241 1.6238 1.6359 1.6237
2 0.5939 0.5936 0.6050 0.5939 0.5936 0.6050 0.5921
3 0.4712 0.4695 0.4803 0.4707 0.4692 0.4801 0.4680
4 0.2970 0.2939 0.3057 0.2957 0.2932 0.3055 0.2916
5 0.0792 0.0822 0.1061 0.0772 0.0812 0.1056 0.0723
6 0.0521 0.0537 0.0775 0.0495 0.0524 0.0770 0.0432
7 0.0561 0.0555 0.0784 0.0497 0.0521 0.0767 0.0430
8 0.0556 0.0531 0.0756 0.0454 0.0476 0.0728 0.0384

9 0.0614 0.0562 0.0771 0.0458 0.0479 0.0730 0.0389
10 0.0673 0.0592 0.0787 0.0460 0.0480 0.0731 0.0390
11 0.0733 0.0624 0.0804 0.0461 0.0481 0.0733 0.0392
12 0.0793 0.0656 0.0822 0.0462 0.0482 0.0733 0.0392
13 0.0855 0.0688 0.0839 0.0463 0.0482 0.0734 0.0392
14 0.0919 0.0720 0.0857 0.0463 0.0483 0.0734 0.0392
15 0.0982 0.0752 0.0874 0.0463 0.0483 0.0734 0.0392
16 0.1046 0.0784 0.0891 0.0463 0.0483 0.0734 0.0392
17 0.1112 0.0817 0.0909 0.0463 0.0483 0.0735 0.0392
18 0.1179 0.0851 0.0927 0.0463 0.0483 0.0735 0.0392
19 0.1248 0.0885 0.0945 0.0463 0.0483 0.0735 0.0392
20 0.1318 0.0919 0.0964 0.0463 0.0483 0.0735 0.0392

Table I
COMPARISON OF AVERAGE RER SCORES OBTAINED USING: STANDARD WLS ESTIMATOR WITH DIFFERENT ORDER AND BANDWIDTH SETTINGS,

PARTIALLY ADAPTIVE RULE BASED ON MODEL AVERAGING WITH FIXED BANDWIDTH, AND THE PROPOSED COLLABORATIVE-COMPETITIVE MECHANISM

BASED ON MODEL AVERAGING AND BANDWIDTH ADAPTATION.
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Figure 2. Ensemble and time averaged generalized Akaike likelihoods
µn|k(t) obtained for autoregressive model orders n = 1, 2, . . . , 20 under
bandwidth k = 500. The data for t < 800 and t > 5200 is incomplete and
was discarded.
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Figure 3. Ensemble and time averaged frequencies of choosing each band-
width setting. The data for t < 800 and t > 5200 is incomplete and was
discarded.

Figures 2 and 3 depict the evolution of the averaged

Akaike’s likelihoods for each model order (N = 20, k = 500)

and the probabilities (frequencies) of choosing each band-

width. Each time bin covers 100 consecutive time instants.

Observe the good agreement of the results with the desired

behavior – during the periods of process stationarity, larger

bandwidth settings are selected more frequently, and model

order is estimated with high confidence. On the other hand,

during the periods of nonstationarity, small bandwidth settings

are preferred, and a more uniform distribution of model

likelihoods can be observed.

V. CONCLUSIONS

The problem of local autoregressive modeling of multivari-

ate locally stationary random processes was considered. The

proposed solution combines the “soft” Bayesian-like model

averaging with the “hard” selection of optimal estimation

bandwidth, carried out using the newly developed extension

of the Akaike’s final prediction error criterion. Simulation ex-

periments show the improved performance of the new adaptive

spectrum estimation method.
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[2] M. Niedźwiecki, Identification of Time-varying Processes. New York:
Wiley, 2000.

[3] H. Akaike, “On entropy maximization principle,” in Applications of

Statistics, P. Krishnaiah, Ed., Amsterdam. The Netherlands: North-
Holland, 1977, pp. 27–41.
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