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Abstract—Even if they can be outperformed by other methods,
the detrended fluctuation analysis (DFA) and the detrended
moving average (DMA) are widely used to estimate the Hurst
exponent because they are based on basic notions of signal
processing. For the last years, a great deal of interest has been
paid to compare them and to better understand their behaviors
from a mathematical point of view. In this paper, our contribution
is the following: we first propose to express the square of the so-
called fluctuation function as a 2D Fourier transform (2D-FT)
of the product of two matrices. The first one is defined from the
instantaneous correlations of the signal while the second, called
the weighting matrix, is representative of each method. Therefore,
the 2D-FT of the weighting matrix is analyzed in each case. In
this study, differences between the DFA and the DMA are pointed
out when the approaches are applied on non-stationary processes.

Index Terms—frequency analysis, Hurst, DFA, DMA.

I. INTRODUCTION

In various applications, signal features can be extracted for
classification. Model parameters, powers in some frequency
bands but also zero crossing are often considered. In the field
of biomedical, the long-range dependence (LRD) based on the
Hurst exponent is often used.
Two main families of approaches exist to estimate the Hurst
exponent. The first one consists of frequency-domain esti-
mators including the local Whittle method, the periodogram
method, the approach based on the empirical mode decom-
position (EMD) [17] or the fractional Fourier transform [18],
the wavelet-based method [1] and the semi-parametric method
[11]. The second one gathers the time-domain estimators
such as the so-called rescaled range analysis, the aggregated
variance method, the absolute-value method and the variance-
of-residuals method. See [20] and [19] for more details.
To estimate the Hurst exponent of a pure mono-fractal time
series, Peng et al. proposed the fluctuation analysis (FA) [14]
and then the detrended fluctuation analysis (DFA) [15]. The
first step of the DFA was to define the trend of the integrated
signal. The authors suggested defining it by concatenating
discontinuous local trends modeled by straight lines of length
NDFA. Then, the fluctuation function, corresponding to the
square root of the power of the difference between the in-
tegrated signal and its trend, is shown to be proportional to
Nα
DFA, where α is the scaling exponent. The Hurst exponent

is then deduced as it is equal to α−1. Since, various ways have
been proposed to obtain the global trend of a signal [8]. This
led to several variants of the DFA such as the higher-order
DFA where the local trends are approximated by polynomials
of order higher than 1, the regularized DFA which is based on
a regularized least-squares (LS) criterion to obtain the trend
[21] and the adaptive fractal analysis (AFA) [16] correcting
the discontinuities a posteriori. In the following, we focus
our attention on the detrended moving average (DMA), also
known as ”moving average filtering” in economics. It consists
in low-pass filtering the integrated signal to deduce the trend.
In its standard version, the filter has a finite impulse response
of length NDMA [2] [13].
The DFA and the DMA belong to the nonlinear dynami-
cal system analysis techniques which also include Lyapunov
exponents [12]. In addition to the approximate entropy and
the sample entropy, they are widely used especially in the
field of biomedical, gait analysis, stock market prediction and
meteorology. Unlike the wavelet-based approach or the local
Whittle method, the DFA and the DMA have the advantage
of a priori not requiring advanced skills in statistical signal
processing since they are based on simple concepts like
regression and linear filtering. This is probably one of the
reasons of their popularity even if they may be outperformed
by other approaches. It is a compromise between performance,
computational cost and simplicity of implementation and use.
For the last years, efforts have been made to provide exten-
sions of the algorithms [3], to develop fast versions of these
approaches [22] [23], and to propose mathematical analysis
in order to better understand their behaviors [4]–[7] [9] [10].
In [4], the authors aimed at finding a relation between the
square of the fluctuation function and an estimation of the
normalized covariance function of the signal, by assuming that
the process was wide-sense stationary (w.s.s.) and ergodic and
by making some approximations. Kiyono et al. analyzed the
single-frequency responses of both the DFA and the higher-
order DFA [9] and the centered DMA [10], but did not take
into account the centering step. They concluded that, for
stochastic processes whose power spectral density (PSD) is a
function of the frequency f of the form f−β , the higher-order
DFA is convenient to estimate α as long as α = β+1

2 .
Our work is complementary to the above recent studies. It
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is based on a uniform matrix way to express the square
of the fluctuation function. For the DFA and the DMA, we
first propose analytic expressions of the trend vectors, the
residuals and the powers of the residuals. Then, we give an
interpretation of these powers as the 2D-FT of a matrix defined
from the instantaneous correlations of the signal multiplied
by a weighting matrix. Therefore, analyzing the 2D-FT of the
weighting matrix is a way to compare the DFA with the DMA.
The remainder of this paper is organized as follows: In section
II, the main steps of the DFA and the DMA are briefly
recalled. Section III deals with the uniform presentation and
the interpretation. Conclusions and perspectives are then given.

II. STEPS OF THE DFA AND THE DMA

Let us consider M consecutive samples {y(m)}m=1,...,M of
the signal. The DFA and the DMA are defined by the following
four steps [15] [2]:
1. The profile yint(m) =

∑m
i=1(y(i)− µy) is first computed,

where µy = 1
M

∑M
m=1 y(m) is the mean of y.

2. The trend of the profile is then estimated.
- With the DFA, the profile is split into L non-overlapping
segments of length NDFA, denoted as {yint,l(n)}l=1,...,L with
n ∈ [[1;NDFA]]. As M is not necessarily a multiple of NDFA,
the last M−LNDFA samples of the profile are not considered.
The lth local trend, which corresponds to the trend xl(n) of the
lth segment yint,l(n), is modeled as a straight line ∀l ∈ [[1;L]]
and ∀n ∈ [[1;NDFA]]:

xl(n) = al,1[(l − 1)NDFA + n] + al,0 (1)

Then, ∀l ∈ [[1;L]], the parameter vector θl =
[
al,0 al,1

]T
is

estimated in the LS sense from the profile.
- With the DMA, known as ”simple moving average” [24],
the profile is low-pass filtered. The impulse response of the
filter is given by hDMA(n) = 1

NDMA
for n = 0, ..., NDMA−1.

Due to the impulse-response symmetry, it is a linear-phase
filter with a constant group delay equal to NDMA−1

2 Ts, with
Ts the sampling period. Therefore, NDMA is chosen odd.
In the following, although NDFA and NDMA do not have the
same meaning, NDFA = NDMA = N .
3. The resulting trend is subtracted to the profile. The fluc-
tuation function, i.e. the square root of the residual power,
F•(N), is computed. (•) denotes the method (DFA or DMA).
4. Steps 2 and 3 are repeated for different values of N . At
this stage, as F•(N) ∝ Nα [14], log(F•(N)) is plotted as a
linear function of log(N). The final step is to search a straight
line fitting the log-log representation. The quantity α is hence
estimated in the LS sense.

III. UNIFORM PRESENTATION OF THE DFA AND THE DMA
BASED ON A MATRIX FORM

A. Notations

Let us first introduce some notations that will be useful in
the remainder of the paper. Ij is the identity matrix of size j.
1j×k and 0j×k are matrices of size j×k filled with ones and
zeros respectively. Jj = Ij − 1

j1j×j . diag([.], j) is a matrix
whose jth diagonal is equal to [.]. Thus, diag(11×N−1, 1) is

the square matrix of size N whose 1st sub-diagonal above the
main one has its elements equal to 1. Xl is a N × 1 vector
storing the values of xl(n). Y and Yint are two column vectors
storing the samples {y(n)}n=1,...,M and {yint(n)}n=1,...,M

respectively. Using the above notations, this leads to:

Yint = [yint(1), ..., yint(M)]T = HMJMY (2)

with HM =
∑M−1

r=0 diag(11×M−r,−r) a low triangular matrix
filled with ones. Finally, let us introduce the matrix of size
(j,M) defined as follows:

Cj,k = [0j×k Ij 0j×(M−(j+k))] (3)

In this case, one can easily express the first LN elements of
the vector Yint as follows:

Yint(1 : LN)= [yint(1), yint(2), ..., yint(LN)]T (4)
= CLN,0Yint =

(2)
CLN,0HMJMY

Finally, for the sake of simplicity, let us define N ′ = N−1
2

.

B. Matrix form of the power of the residual with DFA

Using a vector form of (1), the local trend vector satisfies:

Xl = Alθl ∀l ∈ [[1;L]] (5)

where Al is a N×2 matrix whose first column corresponds to
a vector of 1 and whose second column is defined by the set of
values {(l− 1)N +n}n=1,...,N . By introducing the parameter
vector ΘDFA =

[
θ1 . . . θL

]T
of size 2L×1, and the (LN×2L)

matrix ADFA which is block diagonal matrix defined from the
set of matrices {Al}l=1,...,L, the parameters defining the local
trends satisfy:

arg min
ΘDFA

∣∣∣∣∣∣CLN,0Yint −ADFAΘDFA

∣∣∣∣∣∣2 (6)

This leads to:

Θ̂DFA = (ATDFAADFA)−1ATDFACLN,0Yint (7)

The trend vector TDFA = ADFAΘ̂DFA can then be deduced:

TDFA = ADFA(ATDFAADFA)−1ATDFACLN,0Yint (8)

Therefore, the residual RDFA = CLN,0Yint−TDFA of the pro-
jection of CLN,0Yint onto the space spanned by the columns
of ADFA is given by:

RDFA =
(8)

[
ILN −ADFA(AT

DFAADFA)−1AT
DFA

]
CLN,0Yint (9)

Defining BDFA as
[
ILN −ADFA(AT

DFAADFA)−1AT
DFA

]
and

by combining (2) and (9), one has:

RDFA = BDFACLN,0HMJMY = BDFAY (10)

Given ΓDFA = 1
LN

B
T
DFABDFA of size M ×M and using the

properties of the trace of a matrix, the power of the residual,
also called the generalized variance [22], can be expressed as
follows1:

F 2
DFA(N) =

1

LN
RT

DFARDFA = Tr(ΓDFAY Y T ) (11)

1F 2
DFA is explicitly written as a function of N . For the sake of simplicity,

this is omitted for the previous quantities (BDFA, RDFA, TDFA, etc.).
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Comments on ΓDFA: Let us rewrite ΓDFA :

ΓDFA =
1

LN
JTMHTMC

T
LN,0 (12)

×(ILN −ADFA(ATDFAADFA)−1ATDFA)CLN,0HMJM

In (12), the matrix ILN − ADFA(ATDFAADFA)−1ATDFA is
block diagonal. Each block is defined by IN−Al(ATl Al)−1ATl
with l = 1, ..., L. They are all equal. Indeed, Al(ATl Al)

−1ATl
corresponds the orthogonal projector onto the space spanned
by the columns of Al. However, the 1st column of Al is equal
to the 1st column of A1 while the 2nd column of Al is a
linear combination of the 1st and 2nd columns of A1. So, for
l = 1, ..., L, one has:

A1 = IN −Al(A
T
l Al)

−1AT
l = IN −A1(AT

1 A1)−1AT
1 (13)

The above matrix A1 has three main properties that will be
used in the following: 1/ A1 = A1

T . 2/ the space spanned by
the columns of 1N×N corresponds to the space spanned by
the first column of A1. Therefore, A11N×N is the null matrix.
3/ the space spanned by the columns of HN1N×N corresponds
to the space spanned by the two columns of A1. Therefore,
A1HN1N×N is also the null matrix. By combining all the
properties, it can be shown that 1N×NA1 and 1N×NHTNA1

are null matrices. So, taking into account the above comments
on A1, ΓDFA can be expressed as follows:

ΓDFA =
1

LN
HT

MCT
LN,0(IL ⊗A1)CLN,0HM (14)

where ⊗ denotes the Kronecker product. This matrix is a block
diagonal matrix, where each block is the same.

C. Matrix form of the power of the residual with DMA

With the DMA, the M samples of the profile are filtered.
Instead of using a convolution at each time step, let us express
the vector storing the filter output samples. This can be done
by premultiplying Yint by the filtering matrix Mfilt:

Mfilt =
1

N

N−1∑
r=0

diag(11×M−r,−r) (15)

In addition, the group delay of the filter corresponding to N ′

samples has to be compensated. This can be done by adding
a pre-multiplication by the following M ×M matrix:

Mcomp = diag
(
11×(M−N′), N

′) (16)

The resulting trend vector is equal to McompMfiltYint. How-
ever, the last N ′ elements of this vector are equal to 0. In
addition, due to the transient behavior of the filtering which
corresponds to the first N −1 samples and the delay compen-
sation introduced above, the first N ′ elements of the current
trend vector should not be taken into account. For the above
reasons, only a vector of size M−N+1 should be considered.
This amounts to adding another pre-multiplication by the
matrix CM−N+1,N ′ . Therefore, the trend vector satisfies:

TDMA= CM−N+1,N ′McompMfiltYint (17)
=
(2)
CM−N+1,N ′McompMfiltHMJMY

Therefore, the following residual is considered:

RDMA= CM−N+1,N′ (IM −McompMfilt) HMJMY (18)

= BDMAHMJMY = BDMAY

Then, using trace properties, F 2
DMA(N) can be deduced:

F 2
DMA(N) =

1

M −N + 1
RT

DMARDMA = Tr(ΓDMAY Y T )

(19)
Comments on ΓDMA = 1

M−N+1
B

T
DMABDMA: It can be shown

that BDMA is a rectangular Toeplitz matrix of size (M−N+
1)×M whose first column is [− 1

N 01×(M−N)]
T and first row

is [− 1
N
· · · − 1

N︸ ︷︷ ︸
N′

1 − 1
N
− 1

N
· · · − 1

N︸ ︷︷ ︸
N′

01×(M−N)].

Therefore, BDMAHM is also a rectangular Toeplitz matrix of
size (M−N+1)×M whose first column is 0(M−N+1)×1 and
first row is [0 1

N · · ·
N ′

N − N ′

N · · · −
1
N 01×(M−N)]. Finally,

BDMAHM1M×M is the null matrix. Therefore, ΓDMA is a
symmetric matrix of size M ×M whose first row and first
column are null. The rest of the matrix is a null matrix except
the main diagonal and the first N ′ + 1 sub-diagonals above
and below the main diagonal.

D. Towards a uniform expression of the residual power

Given the above two subsections, the power of the residual
F 2
• (N) with • =DFA or DMA can be expressed as:

F 2
• (N) = Tr(Γ•Y Y T ) (20)

It should be noted that as α is computed from the log of
F 2
• (N) for multiple values of N , it is a non-linear function of
Y -as we could expect-. As M is the size of the square matrix
Γ•, (20) becomes:

F 2
• (N)=

M∑
k=1

Γ•(k, k)y2(k) (21)

+
M−1∑
r=1

M−r∑
k=1

[Γ•(k, k + r) + Γ•(k + r, k)]y(k)y(k + r)

Thus, F 2
• (N) can be expressed from the instantaneous correla-

tions {y(k)y(k+r)}r=−M+1,...,M−1 which are then weighted.
Given the structure of Γ• provided in sections III-B and III-C,
F 2
DFA(N) and F 2

DMA(N) do not depend on the instantaneous
correlation of the signal y whose lag is strictly larger than N−1

and N ′ + 1 respectively.
Let us now introduce the following two matrices of size
(2M − 1 × 2M ). Ycorr has its kth column storing the
instantaneous correlations of the signal y at time k for the
lags varying from M − 1 to 1−M :

Ycorr =



y(1)y(1− (M − 1)) . . . y(M)y(M − (M − 1))
y(1)y(1− (M − 2)) . . . y(M)y(M − (M − 2))

...
...

...
y(1)y(1) . . . y(M)y(M)

...
...

...
y(1)y(1 + (M − 2)) . . . y(M)y(M + (M − 2))
y(1)y(1 + (M − 1)) . . . y(M)y(M + (M − 1))


(22)
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The weighting matrix W• is filled with zeros. Its i-th anti-
diagonal2, with i = 1, ...,M is of length M and equal to
[Γ•(1, i),Γ•(2, i), . . . ,Γ•(M, i)]. Thus, for M = 3, one has:

W• =


0 0 Γ•(3, 1)
0 Γ•(2, 1) Γ•(3, 2)

Γ•(1, 1) Γ•(2, 2) Γ•(3, 3)
Γ•(1, 2) Γ•(2, 3) 0
Γ•(1, 3) 0 0

 (23)

Let us give two examples of W• in Fig. 1 with N = 9 and
N = 21. The colormap was chosen to distinguish the null
values from the negative ones and the positive ones. Due to the
expression and the properties of ΓDFA, WDFA corresponds
to the copy of a pattern bMN c times. Additionally, the details
given about the structure of Γ• in subsections III-B and III-C
make it possible to explain the sparse matrices we get.

Figure 1. Weighting matrices WDFA (left) and WDMA (right) for M = 60.

Given (22) and (23), (21) can be seen as the two-
dimensional Fourier transform (2D-FT) of the element-wise
multiplication of Ycorr and W• for the set of the spatial
frequencies (u, v) = (0, 0). Given the properties of the Fourier
transform, F 2

• (N) can also be expressed as the convolution
between the 2D-FTs of Ycorr and W•:

F 2
• (N) = F (YcorrW•)|(u=0,v=0) (24)

=

(
F (Ycorr) ~ F (W•)

)
|(u=0,v=0)

where u and v are the normalized spatial frequencies, F
denotes the 2D-FT and ~ the convolution.
Therefore, one way to compare the DMA with the DFA is to
compare the properties of the 2D-FT of W•.

2The ith anti-diagonal of the matrix W• corresponds to the set of elements
located at the (2M+1−j−i)th row and the jth column, with j = 1, ...,M .

E. Analysis of F (W•) and its influence on F 2
• (N)

1) About the 2D-FT of the weighting matrix: Let us first
give some comments on the 2D-FT of the weighting matrix
W• for the DFA and the DMA.

Figure 2. log(|F (W•)|) with • = DFA (left) and • = DMA (right) for
M = 60 and N = 21.

In Fig. 2, taking advantage of the properties of the 2D-FT3,
the large values of log(|F (WDFA)|) appearing when u is
a multiple of 1/N are representative of two features of the
weighting matrix WDFA: the periodicity of WDFA along the
x-axis induces the large values of log(|F (WDFA)|) on both
sides of the axis v = 0. The non-null anti-diagonals of WDFA

induce the large values located on both sides of the axis
v = −u. For the DMA, log(|F (WDMA)|) is mainly char-
acterized by frequencies around u = 0 and v = −u.
Let us study how log(|F (W•)|) evolves when N increases.
As shown in Fig. 3, for both the DFA and the DMA, the
contribution of (u = 0, v = 0) remains close to 0. When
N increases, W• is more and more composed of frequencies√
u2 + v2 that become smaller and smaller. For each approach,
| log(F (W•)| has two main lobes located at (0, vN,•) and
(0,−vN,•) where vN,• becomes smaller when N increases.
Using our comments on the 2D-FT of W•, let us now deduce
how it influences the power of the residual F 2

• .
2) Impact on the power of the residual: Let us first look at

the DMA case. Given (24) and the fact that the modulus of the
2D-FT of WDMA exhibits two main peaks at ±vN,DMA, the
frequency components of Ycorr at u = 0 and v = ∓vN,DMA

are amplified and contribute to F 2
DMA(N).

Let us analyze E[F 2
• (N)] when y is w.s.s. In this case,

E[Ycorr] is a matrix where each row contains the same
element, which is the correlation function of y for a specific
lag. In this case, by neglecting the windowing influence along
the x-axis, the modulus of the 2D-FT of E[Ycorr] exhibits
frequencies only at u = 0. In addition, the modulus of the
2D-FT of E[Ycorr] is null for every couple (u, v), except for
u = 0, where it corresponds to the PSD of the process y
at the frequency v, by neglecting the windowing influence
along the y-axis. Thus, with the DMA, convolving F (WDMA)

3Let us recall the interpretation of a 2D-FT analysis. Let two Dirac pulses
be located at (u, v) and (−u,−v) in the frequency domain. This leads to a
vector of coordinates (2u, 2v) which defines a direction. In the spatial domain,
this corresponds to a sinusoid of frequency

√
(u2 + v2) along this direction,

and to a constant when looking perpendicular to the direction. When dealing
with images, this corresponds to equally-spaced bands along the direction.
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Figure 3. |F (W•)| with • = DFA (left) and • = DMA (right) vs.
normalized frequencies u and v, for M = 60

with E[Ycorr] amounts to filtering the process y with a band-
pass filter whose central frequency decreases with N . It is
confirmed that DMA acts as an ad hoc wavelet based analysis.
The same comments can be done for the DFA.
Let us now analyze F 2

• (N) in the non-stationary case. The
modulus of the 2D-FT of Ycorr no longer exhibits frequency
only at u = 0, but also at other values of the normalized spatial
frequency u. Thus, given the above-mentioned properties of
F (WDMA), the convolution in (24) amounts to emphasizing
the frequency of Ycorr located at v = ±vN,DMA. When the
DFA is used, there is not only the above phenomenon but
others that are due to the various lobes of log(|F (WDFA)|)
appearing at each normalized spatial frequency u multiple
of 1

N .

IV. CONCLUSIONS AND PERSPECTIVES

Our purpose is to help the user have a better understanding
of the DFA and the DMA. To this end, we suggest expressing
the square of the fluctuation function in a matrix form to show
it depends on the instantaneous correlation function of the
signal. In the stationary case, our analysis confirms that the
methods can be seen as an ad hoc wavelet based approach. In
the non-stationary case, additional terms appear for the DFA.
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