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Abstract—The problem of statistical inference in large-scale
sensor networks observing spatially varying fields is addressed.
A method based on multiple hypothesis testing and Bayesian clus-
tering is proposed. The method identifies homogeneous regions
in a field based on similarity in decision statistics and locations
of the sensors. High detection power is achieved while keeping
false positives at a tolerable level. A variant of the EM-algorithm
is employed to associate sensors with clusters. The performance
of the method is studied in simulation using different detection
theoretic criteria.

Index Terms—IoT, p-values, Distributed Inference, Statistical
Signal Processing, Large-Scale Sensor Networks, BIC

I. INTRODUCTION

Observing and monitoring phenomena that occur within a
spatial field is essential to a variety of applications [1]. This
includes tasks such as detecting occupied radio spectrum in
shared spectrum environments, identifying regions of poor
air quality in environmental monitoring, smart buildings and
different Internet of Things (IoT) applications. Many of these
practical problems can be modeled using a multiple hypothesis
testing framework, with the goal of identifying homogeneous
spatial regions within which a defined null hypothesis H0

(e.g. pollution remaining at tolerable level, radio spectrum
being unoccupied) is in place, and regions where alternative
hypotheses are true. These regions can be formed by assessing
observations made by multiple sensors placed at distinct
locations. In an IoT setup with a massive amount of available
sensors connected to a common Fusion Center (FC), one might
consider communicating all the acquired data to the FC, which
then segments the field into sub-regions corresponding to null
and alternate hypotheses. However, transmitting all observed
data leads to serious communication overhead and significantly
reduced lifespan of the sensor network due to power con-
sumption. It is thus favorable to conduct distributed inference,
where each sensor produces a single test statistic condensing
its observed evidence on hypothesis H0, for example, in
form of a p-value. A p-value quantifies evidence against H0

independent of the observation data model, allowing different
probability models at different sensors. This is desirable since
the properties of the observed phenomenon or field typically
vary locally but smoothly.

Assuming that an occurring phenomenon influences not
just a single point but is continuous and varies smoothly in
space, we can increase the detection performance and reduce
error levels in a network with high sensor density by forming
clusters of sensors that are close to each other and exhibit

similar decision statistics, in our case p-values. This helps if
the evidence collected at a single sensor is not be reliable
enough to reject H0. Accounting for similar evidence accumu-
lated over multiple sensors might allow rejecting H0 reliably.
In fact, we will demonstrate that the algorithm proposed in
Sec. III detects an event associated with alternative hypotheses
even if individual sensors within the affected area would in
majority decide in favor of the null.

Any distinct location in the surveillance area is coupled
with probabilities of H0 or alternative hypotheses Hm. By
observing the field, we will find out how likely H0 or Hm

hold at this sensor location. Each sensor computes a p-value
from its observations and communicates it to the FC, which
combines p-values from multiple sensors with known sensor
location information to identify the homogeneous sub-regions.
Observing p-values at different sensor locations is equivalent
to sampling their field. Finally, each sensor is associated with
membership of its most probable cluster that corresponds to
either the null or alternative hypotheses. The field consists
of an unknown number of alternative regions caused by
phenomena letting the null hypothesis fail and a null region,
that comprises the areas within which H0 holds. The number
of occurring events and thus resulting alternative areas, their
positions and sizes are assumed to be unknown. We derive
a novel Bayesian Cluster Enumeration algorithm for our data
model to select the best fitting spatial field model from a family
of candidate models. The method stems from the idea in [2],
where a decision criterion for Gaussian data is provided.

In multiple comparisons problems, classic single sensor
type I and II error levels are not sufficiently meaningful in the
sense that they do not encourage statements about confidence
in discoveries. As the number of tested hypotheses grows,
the probability of committing at least one false alarm reaches
unity quickly [3]. Moreover, the proportion of false discoveries
may become intolerably high. The first False Discovery Rate
(FDR) method that controls the expected proportion of false
positives among all discoveries was introduced to alleviate
these problems [4]. Efforts on controlling the FDR in a
spatial context were made in [5], where the sensors had to
be clustered before the actual inference. Typically no such
prior clustering information is available. Therefore, dynamic
estimation of clusters from observed test statistics should
improve the overall performance. In [6], FDR is controlled
by estimating parameters of a priori probabilities for H0 and
Hm spatially varying across the grid.
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The paper is structured as follows. In Sec. II, we introduce
the data model and derive the Bayesian Information Criterion
(BIC) that is later used to select the best fitting spatial field
from a number of candidate models that the hypothesis testing
is based upon. The proposed spatial inference algorithm is
derived in Sec. III. In Sec. IV, we demonstrate the validity of
the approach by comparing it to other potentially applicable
algorithms and outline a methodology to use it for FDR-
control. Conclusions are drawn in Sec. V.

II. BAYESIAN CLUSTER ENUMERATION

A. Data Model and Problem Formulation

Let us consider a sensor network of N sensors and denote
by pn the p-value of the nth sensor in known location (xn, yn),
where n = 1, . . . , N . Feature vectors from all sensors, i.e.,
S , {s1, . . . , sN} are available at a FC, where sn =
[pn, xn, yn]

>. An unknown number, K, of events associated
with alternative hypotheses occur at unknown locations within
the network, each of them causing H0 to not hold within a
spatially homogeneous region described by parameter vector
ζk. All Nk sensors within the same region ζk belong to
independent, mutually exclusive and non-empty clusters Ck,
k = 1, . . . ,K. The remaining nodes form the cluster C0, for
which H0 holds. The quantities K, ζk, Nk, and the amount
of evidence against H0 acquired at each affected sensor are
unknown. Assuming statistically independent p-values, the pn
of the N0 sensors in C0 are distributed uniformly [7], i.e.,
P ∼ U(0, 1). According to [8], under Hm, P ∼ B(a), where
B(a) = ap(a−1) is the beta distribution with a single free
shape parameter a. The p-value probability density functions
(PDF) are assumed to be identical within the clusters but might
differ between clusters, as expressed by the associated beta
distribution shape parameters ak, k = 1, . . . ,K. Hence, the p-
value PDF conditioned on a sensor belonging to an alternative
cluster Ck, k = 1, . . . ,K is

fp-val(p|Ck) = B(ak) =

{
akp

(ak−1) p ∈ (0, 1)

0 otherwise,
(1)

while the PDF conditioned on the sensor being in C0 is

fp-val(p|C0) = B(1) = U(0, 1) =

{
1 p ∈ (0, 1)

0 otherwise.
(2)

The PDF representing the probability that a sensor is placed
at (x, y) given that it belongs to Ck becomes

fcoord(x, y|Ck) =
τ (k)(x, y)

A(Ck)
, (3)

with τ (k)(x, y) = 1 if (x, y) ∈ A(Ck) and τ (k)(x, y) = 0
otherwise, A(Ck) denoting the area covered by cluster Ck,
ensuring that the PDFs integrate to 1. With (1)-(3), the
conditional PDF of the feature vector sn results in

f (sn|Ck) = fp-val(pn|Ck)fcoord(xn, yn|Ck). (4)
The clusters Ck, k = 0, . . . ,K are thus fully described by the
parameter matrix ΘK , [θ0, . . . ,θK ], with θk = [ak, ζk]

>.
The goal of this work is to detect the regions for which

H0 does not hold by partitioning S into K + 1 mutually
exclusive clusters C0, . . . , CK . In Sec. III, we propose an

algorithm for identifying K, the clusters Ck and assigning
cluster memberships for each sensor. The proposed method
for estimating K stems from the two-stage Bayesian cluster
enumeration method in [2]. From Eq. (18) in [2] onward, a
multivariate Gaussian model is assumed, which is in contrast
to our uniform and beta distributed data. In the following
subsection, we will derive a new Bayesian cluster enumeration
criterion for the data model introduced above.

B. Proposed Bayesian Cluster Enumeration Criterion

To estimate K, we select the candidate model that clusters
the available test statistics given candidate models Ml of
orders l = 1, . . . , Lmax, with maximum posterior probability

MK̂ = arg max
Ml

p (Ml|S) . (5)

From (5), the authors of [2] derive a general Bayesian clus-
ter enumeration criterion in which both, the network log-
likelihood function (LLF) and penalty term, depend on the
data model. In its general form, for a large number of sensors
(N →∞), their BIC becomes

BIC(Ml) = logLN (τ l,Θl)−
1

2

l∑
k=1

log
∣∣∣Ĵk

∣∣∣ , (6)

where logLN (τ l,Θl) is the LLF and
∣∣∣Ĵk

∣∣∣ is the determinant
of the estimated Fisher Information Matrix (FIM). We derive
the FIM for the data model of this paper in Eq. (20). Note
that the LLF depends on the parameter matrix Θl for model
order l and the matrix of cluster association coefficients
τ l = [τ

(1)
l , . . . , τ

(N)
l ], summarizing the association vectors

τ
(n)
l = [τ

(n,0)
l , . . . , τ

(n,K)
l ] of the individual sensors. When

τ
(k,n)
l := τ

(k)
l (xn, yn) = 1, sensor n at (xn, yn) belongs to

cluster Ck. With (3), and assuming mutual exclusiveness of the
non-overlapping clusters, only one coordinate PDF provides a
non-zero value for a sensor at (xn, yn), i.e., τ (k,n)l = 1 for the
kth coordinate PDF providing a non-zero value and all other
entries of τ (n)

l being zero.
For the remainder of this paper, we assume an initial circular

shape for the alternative clusters Ck, k = 1, . . . ,K. This
models, for example, a point source causing an event that
affects all sensors within a certain distance to the source (e.g.
point source and radio wave attenuation) similarly. In Sec. IV,
we show that even if the true cluster shapes differ signifi-
cantly from circular shape, the algorithm can identify different
cluster shapes reliably. We initially assume circular clusters,
ζk = [xc,k, yc,k, rk]

>, with radius rk, and cluster center
coordinates xc,k and yc,k, respectively. Further, A (Ck) = r2kπ,
and A (C0) = 1−

∑K
k=1 r

2
kπ. The network LLF becomes

logLN (τ l,Θl) =
N∑

n=1

log
l∑

k=0

f (sn|Ck) · P (Ck) (7)

=

N∑
n=1

log
(
τ
(0,n)
l

1

1−
∑l

i=k πr
2
i

N0

N

+
l∑

k=1

τ
(k,n)
l

1

πr2k
B (pn; ak)

Nk

N

)
,
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where P (Ck) = Nk/N is the probability of cluster Ck with
Nk =

∑N
n=1 τ

(k,n)
l . Using the definition of the FIM, its entry

at index [i, j] is given by

Ĵk,[i,j] =E

[(
∂

∂θk,i
logL (θk|Ck)

)(
∂

∂θk,j
logL (θk|Ck)

)]
,

(8)
where the LLF conditioned on being in cluster Ck for k =
1, . . . ,K and using parameters rk and ak is

logL(θk|Ck) =

Nk∑
m=1

log

(
1

πr2k
akp

(ak−1)
m

Nk

N

)
(9)

= −Nk log (π)− 2Nk log (rk) +Nk log (ak)

+ (ak − 1)

Nk∑
m=1

log (pm) +Nk log

(
Nk

N

)
.

III. PROPOSED ALGORITHM

This section describes the proposed algorithm to assign
the sensors to clusters C1, . . . , CK associated with Hm, or
to the null cluster representing H0. The proposed method
stems from an Expectation-Maximization (EM) algorithm with
cluster association coefficients as latent variables. The model
parameter estimates θ̂k are updated based on the feature
vectors sn, weighted by the estimated probability v̂n,k of
belonging to respective cluster Ck. To be consistent with the
EM-framework, the uniform coordinate PDF in (3) must be
replaced by a smooth approximation thereof, i.e.,

fEM,coord(x, y|Ck) =
1

ν

(
1− tanh

(
rx,y − rk

c

))
. (10)

Here, rx,y =
√

(x− xc,k)2 + (y − yc,k)2 is the distance
from the cluster center, ν a normalization constant to ensure∫
R fEM,coord(x, y) = 1, and R is the set of all possible rx,y .

For constant c → 0, Eq. (10) converges to the uniform PDF
and clustering is based only on closeness in (x, y)-coordinates.
For large values of c, the PDF becomes uniform over the entire
spatial domain and the p-values dominate the clustering. In the
numerical experiments, we select a sharp but continuous PDF
by letting c = 0.01. Eq. (4) is approximated with Eq. (10) by

fEM (sn|Ck) = fEM, coord(x, y|Ck)fp-val (p|Ck) . (11)
The objective is to maximize the network likelihood, that is,

LEM , LEM (τ l,Θl) =
N∑

n=1

log
l∑

k=0

Nk

N
fEM (sn|Ck) . (12)

At the ith iteration, the E-step provides the cluster association
probabilities as

v̂
(i)
n,k =

N̂
(i−1)
k fEM(sn|Ĉ(i−1)k )∑l

j=0 N̂
(i−1)
j fEM(sn|Ĉ(i−1)j )

, (13)

with Ĉ(i−1)k , k = 1, . . . , l denoting the clusters with N̂
(i−1)
k

elements defined by parameter estimates θ̂
(i−1)
k . The M-step

provides updates θ̂
(i)

k = [â
(i)
k , ζ̂

(i)

k ]>, maximizing the LLF. C0
is completely specified by the geometrical alternative cluster
features ζ1, . . . , ζK .

The shape parameters ak of the beta distribution and the
cluster centers are determined using MLEs

â
(i)
k = −

∑N
n=1 v̂

(i)
n,k∑N

n=1 v̂
(i)
n,k log pn

(14)

x̂
(i)
c,k =

∑N
n=1 v̂

(i)
n,kxn∑N

n=1 v̂
(i)
n,k

ŷ
(i)
c,k =

∑N
n=1 v̂

(i)
n,kyn∑N

n=1 v̂
(i)
n,k

. (15)

However, Eq. (10) does not allow the computation of an MLE
for the coordinate cluster boundary rk since its derivative is
never equal to zero. An estimate of rk is found by

r̂
(i)
k =

√√√√√√2

∑N
n=1 v̂

(i)
n,k

((
xn − x̂(i)c,k

)2
+
(
yn − ŷ(i)c,k

)2)
∑N

n=1 v̂
(i)
k,n

.

(16)
Because (16) is not an MLE, a modification of the updating
scheme is required to guarantee that the parameter update
r̂
(i)
k , k = 1, . . . , l does not decrease the overall network LLF,

see [9]. In particular, after updating N̂
(i)
k , and ζ̂k

(i)
, we

define the spatially updated parameter matrix Θ̂
(i)

l,su whose

kth column is θ̂k,su = [â
(i−1)
k , ζ̂

(i)

k ]>, and resulting LLF

L(i)
EM,su , LEM(τ̂

(i)
l , Θ̂

(i)

l,su). If we increase the LLF by the
spatial update, we keep these updated parameters. Otherwise,
we decide for convergence of LLF in spatial domain and
update the shape parameters of the beta distribution. The
complete Spatial Inference based on Clustering of p-values
(SPACE-COP) algorithm, including initialization, model order
selection, and post processing is summarized in Alg. 1.

IV. NUMERICAL EXPERIMENTS
We present Monte Carlo (MC) simulation results for three

different scenarios: two setups are composed of different
numbers of randomly generated true clusters of circular ge-
ometry in the spatial domain (Sc. 1 and Sc. 2) and one
simulation with fixed clusters of differing geometries and
topology associated with alternative hypotheses (Sc. 3), to
illustrate the capability of SPACE-COP to identify clusters
and sub-regions of arbitrary shape. We assume the sensors
to be uniformly distributed across the normalized map, i.e.,
we do not make assumptions on particularly beneficial sensor
locations. Clusters are non-overlapping and lie fully within
the defined spatial domain of interest. We use 100 MC runs,
a network comprising N = 10, 000 uniformly distributed
sensors transmitting p-values and positions to the FC. The
initialization shape parameter is ainit = 0.0005, and the shape
parameter of the beta distribution associated with the p-values
under the alternative hypotheses is set to asim,max = 0.35,
which provides at least 35% of p-values with p < 0.05.
Thus, when conducting single sensor (SS) thresholding at level
αss = 0.05, a vast majority of the sensors within the area where
an alternative hypothesis holds accepts H0.

We consider four quantitative performance measures: The
overall probability of sensors correctly assigned to regions of
null and alternatives pca, the probabilities of missed detection
pmd and false alarm pfa (false discoveries) and the false
discovery proportion (FDP), whose expectation is the FDR.
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Algorithm 1 SPACE-COP

1: Define ainit and obtain K = {sn ∈ S|B(pn; ainit) > 1}
2: for l = 1 : Lmax do
3: Apply k-means on K to find l cluster centers

(x̂
(0)
k , ŷ

(0)
k ) associated with alt. hypotheses and clusters

C(0)k for k = 1, . . . , l based on (x̃n, ỹn) of sensors in K
4: Initialize r̂(0)k =

√
2 ·med((x̃n − x̂(0)k )2 + (ỹn − ŷ(0)k )2)

5: Set N̂ (0)
0 = N(1−

∑l
k=1(r̂

(0)
k )2π), N̂ (0)

k = N(r̂
(0)
k )2π

6: Set â(0)k = 0.1, k = 1, . . . , l and i = 0
7: procedure EXPECTATION-MAXIMIZATION

8: while (L(i)
EM−L

(i−1)
EM >δ)∨(L(i−1)

EM −L(i−2)
EM >δ) do

9: Increment i = i+ 1
10: Compute v̂(i)n,k from Eq. (13)
11: Update N̂ (i)

k =
∑N

n=1 v̂
(i)
n,k

12: Update ζ̂
(i)

k from (15), (16)
13: if L(i)

EM,su − L
(i−1)
EM < δ then

14: â(i) = â(i−1)

15: else
16: Set ζ̂

(i)

k = ζ̂
(i−1)
k and update â(i) from (14)

17: end if
18: end while
19: end procedure
20: Hard decision about cluster memberships by
Ĉk =

{
sn ∈ S|k = arg max v̂

(i−1)
n,k

}
, k = 0, . . . , l

21: Compute BIC(Ml) according to (6)
22: end for
23: Model Order Selection by K̂ = arg maxl BIC(Ml)

24: Eliminate clusters with â(i−1)k > 0.8
25: Merge clusters that overlap in (x, y) domain

We aim to maximize pca while keeping the other criteria low.
Consider the trade-off between pfa and pmd: A procedure that
requires only little alternative evidence to reject H0 generally
provides low pmd but large pfa and vice-versa. As FDR control
procedures such as BH control the proportion of false positives
among all positives and are less conservative in terms of Type I
error level control, they are favorable in multiple hypothesis
problems [4]. The Bayesian FDR (BFDR) [10] approximates
the FDR when used with appropriate hypothesis probabilities
for each sensor. An upcoming journal paper will introduce
a BFDR-control mechanism by rank-ordering and threshold-
ing the converged zero-cluster association probabilities that
SPACE-COP provides similar to [6].

We compare the performance of our suggested method to a
classic SS Neyman-Pearson detector with a predefined level
αss, the BH procedure [4] that controls the FDR below a
given threshold value qBH and the two-step cluster testing
and trimming (BTS) procedure [5] that controls the FDR
asymptotically at qBTS. For simulation, the parameters of
the different procedures are chosen such that they provide
performance measures at a comparable scale. The first two
competitors consider individual sensors only, hence, they lack
power pD = 1−pmd as compared to the clustering approaches.
BTS controls the FDR using clusters defined beforehand.

TABLE I: Simulation Results (in %). Our method associates
most sensors correctly with true hypotheses.

Measure SPACE-COP BTS BH SS

Sc. 1

pca 97.96 95.51 93.18 93.1
pmd 5.98 33.46 55.78 48.91
pfa 1.53 0.83 1.5 0.56

FDP 10.07 8.15 8.95 19.41

Sc. 2

pca 98.63 92.98 85.41 85.54
pmd 3.19 17.49 47.91 48.28
pfa 0.68 2.97 1.57 1.51

FDP 1.71 8.16 7.29 7.44

Sc. 3

pca 93.61 92.07 86.91 86.7
pmd 9.47 21.31 44.89 37.95
pfa 5.34 3.43 2.34 4.97

FDP 14.42 10.82 11.19 19.86

We simply divide the grid into a uniform constellation of
MBTS squared clusters to compare it to SPACE-COP. We use
MBTS = 1024, the value providing the best results for the
considered scenarios. The results are displayed in Table I.

A. Scenario 1
We first consider a setting with K1 = 7 small regions where

alternative hypotheses are in place and define Lmax = 15.
On average over all MC runs, 11.37% of network sensors
were observing one of the alternative hypotheses. BH (with
qBH = 10%) and SS (αss = 1.5%) both assign approximately
93% of sensors correctly and both significantly lack detection
power since sensors are correctly associated with alternative
hypotheses in only about 50% of cases. As stated earlier,
the power increases significantly when considering multiple
sensors in the vicinity. When applying BTS with q1 = 0.05
and qBTS = 0.25, as suggested in [5], we observe a significant
improvement in detection power pD = 1−pmd and a resulting
increase in pca. Using our spatial model, we approximately
double the gain in pca from BTS compared to the single sensor
schemes and reduce pmd from 33% to 6%, whilst keeping pfa
and FDP at tolerable levels.

B. Scenario 2
The second setting consists of K2 = 3 larger regions where

alternative hypotheses hold with an additional constraint to the
previous scenario: The alternative clusters cover at least 25%
of the total network coverage area. This resulted in on average
over all MC runs 27.87% true alternative sensors.

Compared to Sc. 1, SPACE-COP has further increased its
performance gain over the competitors. This was expected,
since the geometrical structure of the problem is more pro-
nounced due to the larger size of the clusters and our algorithm
allows to adapt the cluster size to the recorded data.

C. Scenario 3
Finally, we illustrate that our algorithm produces reliable

results also for a setting in which the initial assumption on
cluster shapes is clearly violated for the regions associated
with alternative hypotheses. For illustration purposes, we
consider a setting where the alternative hypotheses hold in a
non-convex half moon shaped region, a torus and a triangular
region, as depicted in Fig. 2. The observed phenomena along
their parameters are still generated independently for each run.
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Fig. 1: Exemplary run (best competitor vs. proposed), with
sensors detected to belong to the H0 area as blue dots and
true alternative areas as red circles as according to Sc. 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
H0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
H1

Fig. 2: Exemplary run using SPACE-COP on Sc. 3, red
boundaries indicating ground truth, small blue dots being H0

on the left; small circles on the right being detected alternative
hypotheses sensors and blue inferred cluster hulls.

We use an increased candidate model order Lmax = 20. In
Fig. 2, we show the clustering results straight after applica-
tion of the BIC, before the merging of overlapping clusters.
SPACE-COP cuts the alternative regions into smaller circles
that usually overlap and are hence merged after the application
of the BIC. The final resulting clusters may have an arbitrary
shape due to the trade-off between spatial coordinates and
observed p-values in the objective of the EM-algorithm: If
a sensor lies outside the estimated circular area of a cluster
but still has similar decision statistics (small p-value) to the
cluster members, the sensor will be associated with the cluster
where the alternative hypothesis is in place. Consequently, the
identified clusters may take an arbitrary shape that differs from
the initially assumed circular shape.

The results in Table I demonstrate that, overall, we still
outperform the competitors, despite a reduced gain w.r.t to
BTS. During simulation, the estimated model order by the
BIC K̂ was either Lmax, or at very close to it. Hence, a
further increase in allowed candidate model order should also
increase the performance gain, because smaller circles will be
able to approximate the shape of the alternative clusters even
better. The threshold for the SS was set to αss = 0.05 in this
experiment, to adjust it to the resulting pfa of its competitors.

V. CONCLUSION

We have derived a novel algorithm applicable to large-
scale sensor networks to perform statistical inference in a

distributed manner and identify homogeneous regions in an
observed phenomenon or field where the null hypothesis does
not hold. The algorithm finds clusters by considering both
observed p-values at each sensor and proximity among the
sensors. The approach uses distribution of p-values under
null and alternative hypotheses, Expectation-Maximization and
BIC to associate sensors with clusters. Simulation results
demonstrate its validity also for cases in which the assumption
on underlying shape of alternative areas was clearly violated
and true alternative areas followed arbitrary shapes.

APPENDIX

Ĵk,[2,1] = Ĵk,[1,2] = E

[
∂ logL (θk|Ck)

∂ak

∂ logL (θk|Ck)

∂rk

]
= E

[(
Nk

ak
+

Nk∑
m=1

log (pm)

)(
−2Nk

rk

)]

= −2N2
k

rk

(
1

ak
+ Ψ (ak)−Ψ (ak + 1)

)
(17)

Ĵk,[1,1] = E

[
∂ logL (θk|Ck)

∂ak

∂ logL (θk|Ck)

∂ak

]
(18)

=
N2

k

ak

(
1

ak
+ 2 (Ψ (ak)−Ψ (ak + 1))

)
+N2

k

(
Ψ
(
ak
)

−Ψ (ak + 1)
)2

+Nk (Ψ1(a1)−Ψ1 (ak + 1))

Ĵk,[2,2] =E

[
∂ logL(θk|Ck)

∂rk

∂ logL(θk|Ck)

∂rk

]
=

4N2
k

r2k
(19)

∣∣∣Ĵk

∣∣∣ =
4N3

k

r2k
(Ψ1 (ak)−Ψ1 (ak + 1)) (20)

• Ψ,Ψ1 The digamma and trigramma functions

REFERENCES

[1] E. Arias-de-Reyna et al., “Crowd-based learning of spatial fields for the
internet of things: From harvesting of data to inference,” IEEE Signal
Process. Mag., vol. 35, no. 5, pp. 130–139, Sep. 2018.

[2] F. Teklehaymanot et al., “Bayesian cluster enumeration criterion for
unsupervised learning,” IEEE Trans. Signal Process., vol. 66, pp. 5392
– 5406, 10 2018.

[3] B. Efron, Large-Scale Inference: Empirical Bayes Methods for Estima-
tion, Testing, and Prediction, ser. Institute of Mathematical Statistics
Monographs. Cambridge University Press, 2010.

[4] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A
practical and powerful approach to multiple testing,” J. Royal Stat. Soc.,
Series B (Methodological), vol. 57, no. 1, pp. 289–300, 1995.

[5] Y. Benjamini and R. Heller, “False discovery rates for spatial signals,”
J. Am. Stat. Assoc., vol. 102, no. 480, pp. 1272–1281, 2007.

[6] T. Halme et al., “Bayesian multiple hypothesis testing for distributed
detection in sensor networks,” in 2019 IEEE Data Sci. Workshop, June
2019.

[7] G. Casella and R. Berger, Statistical Inference. Brooks/Cole Publishing
Company, 1990.

[8] S. Pounds and S. Morris, “Estimating the occurence of false positives
and false negatives in microarray studies by approximating and parti-
tioning the empirical distribution of p-values,” Bioinformatics, vol. 19,
pp. 1236 – 1242, 01 2008.

[9] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[10] B. Efron et al., “Empirical bayes analysis of a microarray experiment,”
J. Am. Stat. Assoc., vol. 96, no. 456, pp. 1151–1160, 2001.

2019 27th European Signal Processing Conference (EUSIPCO)


