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Abstract—In this paper, we propose an adaptive and convex
combination of a recent class of nonlinear adaptive filters in
different configurations. The proposed architecture relies on
the properties of the adaptive combination of filters which
exploits the capabilities of different constituents, thus adaptively
providing at least the behavior of the best performing filter. The
nonlinear functions involved in the adaptation process are based
on spline function interpolation and their shapes can be modified
during learning using gradient-based techniques. In addition, we
derive a simple form of the adaptation algorithm and present
some experimental results that demonstrate the effectiveness of
the proposed method.

Index Terms—Nonlinear adaptive filter, Convex combination,
Flexible spline function, Constrained Least Mean Square, System
identification.

I. INTRODUCTION

ONE of the main issues in nonlinear filtering is the correct
choice of the model to be used in the identification

process [1]. Although many general solutions exist, such as
Neural Networks (NNs) [2], Kernel Adaptive Filters (KAFs)
[3], polynomial adaptive filters and Volterra Adaptive Filters
(VAFs) [4], which provide good results in many simple
applications, the computational complexity of such methods
often prevents their use in real-world applications.

Among the several options proposed in literature, in non-
linear filtering one of the most used structures is the so-called
block-oriented representation, in which dynamic linear time
invariant (LTI) models are connected with memoryless non-
linear functions. The basic classes of block-oriented nonlinear
systems are represented by the Wiener (cascade of a linear
LTI filter followed by a static nonlinear function) and the
Hammerstein (cascade of a static nonlinear function followed
by a LTI filter) models [5] and by those system architectures
originated by the connection of these two classes according to
different topologies (i.e. parallel, cascade, feedback etc. [6]),
such as Sandwich models introduced in [5], [7], composed
by the connection of linear-nonlinear-linear (LNL) blocks or
nonlinear-linear-nonlinear (NLN) blocks.

Recently, a novel approach based on Spline Adaptive Filters
(SAFs) has been proposed in order to implement block-
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oriented models such as the Wiener SAF (WSAF) [8], the
Hammerstein SAF (HSAF) [9] and Sandwich SAF (namely,
S1SAF and S2SAF) [10]. In a general nonlinear problem,
and with no a priori information, the adaptive model (e.g.,
Hammerstein, Wiener or Sandwich) which works better is the
one that mostly resembles the system to be identified. In this
regard, a block-oriented architecture could not work well for
the identification of a general unknown nonlinear system. The
idea to overcome this nonfunctional behavior is the usage of
an architecture combining more nonlinear systems in a convex
manner.

To this purpose, in the context of linear adaptive filtering,
several architectures combining different learning algorithms
were recently proposed [11]–[16]. In these works, it was
proved that the convex combination of adaptive filters can pro-
vide an interesting way to improve adaptive filter performance.
Such combination scheme was also applied to a particular class
of nonlinear adaptive filter approach (see for example [17]–
[19] or Chapter 11 in [1]).

In this paper, we extend the idea of convex filter com-
bination to SAFs. A particular attention is posed to the
derivation of the learning algorithm for the final combination
by solving a suitable constrained optimization problem. In fact,
the adaptation of such coefficients should be fast and accurate
in order to guarantee a good convergence performance.

The rest of the paper is organized as follows. Section
II introduces briefly the SAFs, while Section III describes
the main idea of the paper. Then Section IV shows some
experimental results, and finally Section V concludes the work.

II. BACKGROUND ON SAF

For a complete introduction on spline adaptive filtering and
spline interpolation, we refer to our recent papers [8]–[10]. In
summary, a SAF consists in the cascade of one or two LTI
filters and one or two static nonlinear function, depending on
which model among the Wiener, Hammerstein or Sandwich
ones has to be implemented. The peculiarity of SAFs is that the
static nonlinearity is obtained as a cubic spline interpolation of
a fixed number of points collected in a look-up table (LUT)
and called as control points. By adapting the values of the
control points into the LUT, it is possible to change the shape
of the interpolated nonlinearity. Specifically, the output β[n]
of the nonlinear function β[n] = ϕ (α[n]) is determined by
using two local parameters: un and i, which directly depend
on the input α[n]. In the simple case of a uniform spacing
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of knots and a third-order curve interpolation adopted in this
work, the computation procedure for the determination of the
span index i and the local parameters un can be expressed by
the following equations [8]:

un =
α[n]

∆x
−
⌊
α[n]

∆x

⌋
,

i =

⌊
α[n]

∆x

⌋
+
Q− 1

2
,

(1)

where ∆x is the uniform space between knots, b•c is the floor
operator and Q is the total number of control points. Note that
the index i is depending of time n, i.e. in; for simplicity of
notation we adopt the convention in ≡ i.

The output of the nonlinearity can be then evaluated as
follows:

β[n] = ϕ (α[n]) = ϕi(un) = uTnCqi,n, (2)

where, considering a third-order spline basis, the matrix
C ∈ R4×4 is a pre-computed matrix, usually called spline
basis matrix, the vector un is defined as un ∈ R4×1 =[
u3n, u

2
n, un, 1

]T
, and the vector qi,n contains the control

points at instant n and is defined by qi,n ∈ R4×1 =

[qi, qi+1, qi+2, qi+3]
T , where qk is the k-th entry in the LUT.

In (2), ϕi(un) is the i-th span of the spline, and it represents
the local interpolation of the function ϕ(·) on an interval
spanned by four control points around the i-th one.

A very important evaluation for the algorithm derivation, is
the derivative of (2) with respect to its local parameter un. It
is easily evaluated in:

ϕ′i(un) = u̇TnCqi,n, (3)

where u̇n ∈ R4×1 =
[
3u2n, 2un, 1, 0

]T
.

The on-line learning algorithm can be derived by consider-
ing the cost function1 (CF) Ĵ(wn,qi,n) = E{e2[n]}, where
e[n] = y[n]−d[n] is the error, y[n] the system output and d[n]
the reference signal, usually corrupted with an additive noise
v[n]. As usual, this CF is approximated by considering only
the instantaneous error:

J(wn,qi,n) = e2[n]. (4)

The expression of the error signal e[n] in (4) and the number
of free parameters depend on the particular architecture used
(Wiener, Hammerstein or Sandwich). Fig. 1 shows the WSAF,
HSAF, S1SAF and S2SAF systems. The learning rules for
the free parameters of the different SAF architectures are
summarized in Table I. For all the details we refer to [8]–
[10].

III. COMBINATION OF WIENER-HAMMERSTEIN SAF
Let us denote with y1[n], y2[n], . . . , yN [n] the outputs of N

Wiener, Hammerstein and/or Sandwich systems. We then form
the output y[n] of the combined architecture as:

y[n] =
N∑
k=1

hk[n]yk[n], (5)

1In this work, we consider only real-valued variables.
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Fig. 1: Block diagrams of WSAF (a), HSAF (b), S1SAF (c)
and S2SAF (d) systems.

where the hk[n] are N mixing parameters with values into
the interval [0, 1]. Usually, a convex combination is preferred,
hence

∑N
k=1 hk[n] = 1. As a simple example, the convex

combination of a Wiener and an Hammerstein SAF is shown
in Fig. 2. The generalization to a combination of a greater
number of SAFs is straightforward.

The output error of the whole architecture can then be
written simply by:

e[n] = d[n]− y[n] =

N∑
k=1

hk[n]ek[n], (6)

Architecture Learning rule

WSAF
wn+1 = wn + µwe[n]ϕ′

i(u)xn

qi,n+1 = qi,n + µqe[n]CTu

HSAF
wn+1 = wn + µw[n]e[n]sn

qi,n+1 = qi,n + µq [n]e[n]CTUi,nwn

S1SAF

q
(2)
i,n+1 = q

(2)
i,n + µ

(2)
q [n]e[n]CTu

(2)
n

wn+1 = wn + µw[n]e[n]ϕ′
i(u

(2)
n )sn

q
(1)
i,n+1 = q

(1)
i,n + µ

(1)
q [n]e[n]ϕ′

i(u
(2)
n )CTU

(1)
i,nwn

S2SAF

w
(2)
n+1 = w

(2)
n + µ

(2)
w [n]e[n]rn

qi,n+1 = qi,n + µq [n]e[n]CTUi,nw
(2)
n

w
(1)
n+1 = w

(1)
n + µ

(1)
w [n]e[n]ϕ′

i(un)Xnw
(2)
n

TABLE I: Learning rules for the different SAF architectures.
For details on parameters see [8]–[10].
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Fig. 2: Block diagram of the proposed combined Wiener-Hammerstein SAF architecture.

where the ek[n] = d[n] − yk[n] are the single filter output
errors and d[n] is the reference signal, that is the output of the
target model.

The adaptation of the mixing coefficients hk[n] are car-
ried out by a constrained LMS (CLMS) algorithm (see
for example [20]). In this regard, let us pose hn =
[h1[n], h2[n], . . . , hN [n]]

T the mixing coefficients vector at
time n, then the adaptation is solved by the following mini-
mization problem:

min
h

1

2
e2[n], s.t. cThn = b, (7)

where c = 1N ≡ [1, 1, . . . , 1]
T and b = 1 in the considered

case.
Problem (7) can be solved by the Lagrangian multipliers

method. Specifically, the Lagrangian function L is the follow-
ing:

L = e2[n] + λ
(
b− cThn

)
, (8)

where λ is the Lagrangian multiplier. Taking the derivative
of (8) with respect to the free parameters hn, after some
mathematical manipulation, the solution of problem (7) is
given by:

hn+1 =
⌊
P
(
hn + µh[n]e[n]yn

)
+ f
⌋
+
, (9)

where P = I− c
(
cT c

)−1
cT , f = c

(
cT c

)−1
b are a suitable

matrix and vector that can be a priori computed, µh[n] is
the learning rate and bδc+ = max {0, δ}. This last operation
is due to the sub-gradient projection method applied on the
non-negative orthant [21], in order to fulfill the convexity
constraints on each coefficient hk[n]. In addition, the vector
yn = [y1[n], y2[n], . . . , yN [n]]

T collects the last output sample
of the N filters. The algorithm is usually initialized by h0 = f .
Since the CLMS is well known in literature, we skip here the
proof of (9), which can be found on many books like [20].

IV. EXPERIMENTAL RESULTS

In order to validate the proposed combination of nonlinear
adaptive filters, some experimental results were performed.
Experimental tests are addressed towards system identification
problem in diverse and non-stationary scenarios.

A. First experiment

The experiment concerns the identification of an un-
known combined system that consists in: (i) a Wiener
filter composed by a linear FIR component wW

0 =
[0.6,−0.4, 0.25,−0.15, 0.1,−0.05, 0.001]T and a nonlinear
memoryless target function implemented by a 23-points length
LUT qW0 and interpolated by a uniform third degree spline
with an interval sampling ∆x = 0.2 defined as:

qW0 = {−2.2,−2.0,−1.8, . . . ,−1.0,−0.8,−0.91,−0.40,
−1.20, 0.05, 0.0, 0.90, 0.58, 1.0, 1.0, 1.2, 1.4, . . . , 2.2} ;

and, (ii) a Hammerstein system composed by the linear FIR
component wH

0 = [0.3,−0.1, 0.7,−0.15, 0.1,−0.2, 0.01]
T

and a nonlinear memoryless function implemented by a 23-
points length LUT qH0 , defined as:

qH0 = {−2.2,−2.0,−1.8, . . . ,−1.0,−0.8,−0.91,−0.20,
−0.40, 0.05, 0.0, 0.10,−0.30, 1.1, 1.0, 1.2, 1.4, . . . , 2.2} .

The input signal x[n] consists in 50,000 samples of the signal
generated by the following relationship:

x[n] = ax[n− 1] +
√

1− a2ξ[n], (10)

where ξ[n] is a zero mean white Gaussian noise with unitary
variance and 0 ≤ a < 1 is a parameter that determines the
level of correlation between adjacent samples. Experiments
were conducted with a set to 0.5. In addition it is considered an
additive white noise v[n] such that the signal to noise ratio is
SNR = 30 dB. The whole system is non-stationary: we have
split the experiment into four sections: every 12,500 samples
the system to be identified is composed by different combina-
tion of the previous Wiener and Hammerstein systems. More
specifically:

1) 1 ≤ n ≤ 12500: only the Wiener system is active;
2) 12501 ≤ n ≤ 25000: starting from an Hammerstein

system, then it gradually fades towards a Wiener system;
3) 25001 ≤ n ≤ 37500: both the system are simultaneous

active (70% Hammerstein, 30% Wiener);
4) 37501 ≤ n ≤ 50000: only the Hammerstein system is

active.
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Fig. 3: MSE of the proposed convex combination of Wiener
and Hammerstein SAFs.
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Fig. 4: Coefficients h1[n] and h2[n] of the proposed convex
combination of Wiener and Hammerstein SAFs.

The learning rates are set to µw = µq = 0.05 for both the
Wiener and Hammerstein architectures, while µh = 1. Both
the linear components use a filter length of M = 15. The filter
weights are initialized as a Dirac impulse function, while both
the nonlinearities have been initialized as a straight line. The
mixing coefficients vector is initialized to h0 = [1, 1] /2.

Results in terms of MSE are reported in Fig. 3, while Fig.
4 shows the mixing coefficients h1[n] and h2[n], respectively.
The reported results have been averaged over 100 independent
runs. Both the figures confirm the effectiveness of the proposed
approach: in the first tract the combination selects the WSAF;
in the second tract, after the identification of the Hammerstein
model, the combination gradually selects the Wiener one
according to the model to be identified; in the third tract,
both system are selected. An examination of Fig. 4 reveals
that the combination consists in a 30% of a Wiener model
and a 70% of an Hammerstein one, according to the model
to be identified; finally, in the fourth tract, the combination
selects the Hammerstein model. By looking at the transient
tracts in Fig. 3, we can conclude that the convergence speed
is fast and the tracking behavior of the proposed system is very
good. However, from Fig. 3 it should be noted that the MSE
is slightly worst when both the systems are simultaneously
active.

B. Second experiment

In a second experimental set-up, there is a non-stationary
target system that switches among three separate components:
a Wiener model, a LNL sandwich model and a NLN sandwich
one, that works separately in time.

The Wiener system consists in the cascade of an FIR linear
filter represented by the following transfer function:

HW (z) = 0.5−0.1z−1+0.4z−2−0.3z−3+0.1z−4−0.002z−5,
(11)

and the following nonlinear function:

d[n] = G

[
1

1 + e−αs[n]
− 0.5

]
, (12)

where G = 2 and α assumes the value 4 if s[n] > 0, and the
value 0.5 if s[n] ≤ 0.

The LNL model (sandwich model 2) consists in the cascade
of the linear filter HW (z) in (11), the nonlinear function in
(12), and the following FIR linear filter:

HS2(z) = 0.3−0.1z−1+0.7z−2−0.15z−3+0.1z−4−0.2z−5,
(13)

Finally, the NLN model (sandwich model 1), drawn from
[22], consists in the cascade of the following non-polynomial
nonlinearity:

s[n] =
x[n]√

0.9x2[n] + 0.1
, (14)

the following IIR linear filter:

HS1(z) = 0.3
0.5z−1 + 0.25z−2

1− 1.5z−1 + 0.7z−2
, (15)

and the following polynomial nonlinear function:

d[n] = r[n] + 0.2 r3[n]. (16)

The system used for the identification consists in the convex
combination of the following three SAFs: a WSAF, and two
sandwiches models (an S1SAF and an S2SAF, respectively).
The mixing coefficients associated to these systems are h1[n],
h2[n] and h3[n], respectively. Again, the filter weights are
initialized as a Dirac impulse function, while both the non-
linearities have been initialized as a straight line. In addition,
the mixing coefficients are initialized to h0 = [1, 1, 1] /3.

Experiments were conducted with the input signal x[n] in
(10) with a = 0.1 and an SNR = 30 dB. A total of 60,000
samples have been used, and the three systems are switched
every 20,000 samples.

Results in terms of MSE are reported in Fig. 5, while
Fig. 6 shows the mixing coefficients h1[n], h2[n] and h3[n],
respectively. The reported results have been averaged over
100 independent runs. These figures show that the convex
optimization is able to correctly identify the related target
model: in the first tract the combination selects the WSAF
model; in the second tract the combination selects the S2SAF
models; finally, in the third tract the S1SAF has been selected.
This behavior is clearly visible in Fig. 6, but it is also evident
in Fig. 5 from the numerical values of the related MSEs. This
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Fig. 5: MSE of the proposed convex combination of three
SAFs.
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Fig. 6: Coefficients h1[n], h2[n] and h3[n] of the proposed
convex combination of three SAFs.

last figure shows also that, although all components of the
system have been correctly identified, the MSE of the S2SAF
provides a value greater than the other models. In addition, Fig.
5 also shows that the S1SAF model cannot work appropriately
in the first two tracts, this because here the first subsystem
of the target is always a linear component. By looking at the
transient tracts in Fig. 5, we can conclude that the convergence
speed is fast and the tracking behavior of the proposed system
is very good also in this case.

As a final remark, let us note that the MSE of the convex
combination of the three used models always provides a total
error that is less than the single errors.

V. CONCLUSION

In this paper we have presented a convex combination of
nonlinear spline adaptive filters (SAFs). The system imple-
mented is based on Wiener, Hammerstein and Sandwiches
architectures, and it is adapted by using a constrained LMS
(CLMS) approach. The learning rule for the mixing coeffi-
cients has been analytically derived. The convex combination
of SAFs is able to work in a non-stationary environment
and without an explicit a priori knowledge of the model
to be identified. Some experimental tests have demonstrated

the effectiveness of the proposed approach. In particular, the
obtained results show that the nonlinear models have been
always correctly identified, the convergence speed is fast and
the tracking behavior of the proposed approach is very good.
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