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Abstract—Spectral complexity reduction can be used to em-
phasize the leading voice or melody and attenuate the competing
accompaniment of music pieces. This method is known to
facilitate music perception in cochlear implant (CI) users as
spectrally less complex signals are perceived as being more
pleasant. In this paper we investigate a method to obtain a
reduced-rank approximation for the desired complexity reduction
that extends the established projection approximation subspace
tracking methods (PAST, CPAST) with an additional sparsity
constraint. We evaluate our method with the instrumental SIR
and SAR measures as well as an auditory distortion measure
(ADR) on a database of 110 classical chamber music pieces. While
the resulting signal quality is found to be comparable to existing
methods the iterative structure and the reduced computational
complexity of our method make it suitable for real-time and
low-latency on-line applications.

Index Terms—Subspace Tracking, Music Signal Processing,
Cochlear Implants, Sparse Eigenvectors

I. INTRODUCTION

Cochlear implants (CI) have led to a remarkable improve-
ment of speech intelligibility in severely hearing impaired or
deaf people: more than 300,000 patients have been implanted
by now [1]. However, the perception of music signals remains
difficult because of several technical and physiological restric-
tions: the implants can only transmit limited information on
pitch, timbre and dynamics of music signals which is caused
amongst others by the restricted number of electrodes (≤ 22)
and place-pitch mismatches at the interface to the hearing
nerve [2], [3]. Thus, CI listeners report unnatural and distorted
hearing impressions when listening to music. They frequently
prefer easier accessible music genres like country or pop music
over e.g. classical music [4], [5]. Also, it has been shown that
CI users appreciate an emphasis on vocals, bass and drums
and an attenuation of the accompaniment [6].

Recently several studies have been published that investigate
different approaches to improve the music enjoyment of CI
users by reducing the complexity of music signals. In [7]
CI listeners rated recordings of music pieces with a smaller
number of instruments more enjoyable than the original ver-
sions. Hence, in a first group of methods, complexity reduction
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is achieved by reducing the number of competing musical
voices or instruments, e.g., by manually re-engineering multi-
track recordings. However, these separated recordings are
usually not available. Therefore, also (blind) source separation
techniques like non-negative matrix factorization (NMF) [8] or
deep learning [9] can be used to decompose the signals and
remix them with the desired weights. In another approach, the
authors make use of a harmonic/percussive sound separation
(HPSS) method to emphasize drums and other strong rhythmic
elements from the percussive portion of a signal and thereby
de-emphasize its harmonic components [10].

The spectral complexity of a music signal cannot only
be reduced by discarding or attenuating particular voices
or instruments but also by modifying the overtone series
of individual notes directly. In [11] multiple versions of a
monophonic piece were created where the harmonic series of
each tone was reduced to 5 different degrees using custom-fit
low-pass filters. Among those signals CI and normal-hearing
(NH) listeners with CI simulation rated the version containing
only the fundamental frequency F0 of the melody as being
most pleasant.

While source separation methods preserve the original full
spectrum of each separated voice, dimensionality reduction
techniques lead to a spectral complexity reduction as they
affect both the mixture of voices and the harmonic series
of individual voices. These techniques are based on the
assumption that the most prominent elements of the signal
spectrum correspond to strong partial tones of the melody
or leading voice. In a music piece where a predominant
leading voice or melody is accompanied by one or several
instruments as, e.g., in classical chamber music, these most
prominent elements can be identified by principal component
analysis (PCA) [12]. Preserving them and discarding less
prominent spectral components leads both to a reduction of
the overtones and to an attenuation of the accompaniment
[13]. Listening experiments with CI users showed significant
preference ratings for these spectrally simplified signals in
comparison to the unprocessed versions and to score-informed
and NMF-based approaches [14]. Exploiting binaural signals
can further improve the complexity reduction outcome [15].

Subspace tracking methods like the projection approxima-
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tion subspace tracking (PAST) [16] have been employed in
various signal processing applications such as data compres-
sion, image separation or direction-of-arrival estimation. They
are based on the assumption that the clean signal and the
interference can be regarded as separate subspaces. Therefore,
those methods are also a promising means to separate the
preponderant spectral components like the leading voice of a
music signal from an undesired interference like the broadband
accompaniment with reduced computational effort.

In this work we present a preprocessing scheme for a
spectral complexity reduction of music signals which is based
on the well-established and computationally less complex
PAST method [16] to track the desired spectral components
instead of PCA [12]. Starting from the enhanced constrained
projection approximation subspace tracking (CPAST) method
[17] which constraints the signal subspace to be spanned by an
orthonormal basis, we utilize a thresholding method to enforce
the sparsity of the obtained spectral components.

The remainder of this paper is organized as follows: In
Section II we will first review both the PCA-based spec-
tral complexity reduction of music signals and the subspace
tracking methods PAST and CPAST. Then we present the
application of the sparse constrained projection approximation
subspace tracking (SCPAST) method [18] to promote spectral
sparsity. In Sections III and IV the experimental setup and the
experimental results are presented and discussed. Conclusions
are drawn in Section V.

II. SPECTRAL COMPLEXITY REDUCTION USING SUBSPACE
TRACKING METHODS

A. Spectral Analysis

In order to represent music signals we consider a model
where the discrete-time signal s(n) = t(n) + i(n), n ∈ N0 is
a mixture of the target signal t(n) containing the leading voice
and the interfering signal i(n) containing the accompaniment
of a music piece. We split the signal into L overlapping
segments s(n, l) = s(n+ lR) of length N with segment index
l ∈ {1, . . . , L} and segment shift R. Any appropriate spectral
transform like the discrete Fourier transform (DFT) or the
constant-Q transform (CQT) can be employed to compute a
short-time spectrogram representation x(l) of s(n, l).

The harmonic relations of the spectral components have an
essential relevance for music signals. Therefore we choose
the CQT [19], as it features a frequency analysis grid fκ =
fmin · 2

κ
12b which perfectly matches the geometrically spaced

frequency grid of the scales that usually underly western
music. The parameters κ ∈ {1, . . . ,K} and b ∈ N denote
the frequency index and the spectral resolution in terms of
spectral bins per semitone, respectively.

B. Spectral Complexity Reduction

The spectral complexity reduction method is based on the
assumption that the spectrum of a music piece shows the
strong partial tones of its melody or leading voice as its
most prominent components. These components need to be

preserved while other less prominent components are ex-
pected to carry information about the accompaniment and thus
will be dropped. To identify these elements the authors in
[13] applied principal component analysis (PCA) to blocks
U = [x(l1), . . . ,x(lM )] ∈ CK×M of M short-time signal
spectrum segments x(lm). Solving the eigenvalue problem
UUHwk = λkwk leads to an orthonormal set of base
vectors wk which are sorted in descending order of their
corresponding eigenvalues, i.e. λ1 ≥ . . . ≥ λk ≥ . . . ≥ λK .
Hence, the first eigenvectors carry most of the overall variance
and thus represent the most prominent spectral bands of each
segment. To reduce the spectral complexity, only a selected
number k̂ of leading base vectors is retained while those for
k̂ < k ≤ K are dismissed.

To perform PCA, the computationally expensive eigenvalue
problem needs to be solved for each block of signal segments
and thus in a repeated fashion. Therefore, instead of perform-
ing PCA on each block we propose an iterative subspace
tracking method that consists of the following steps: First, we
iteratively estimate the spectral covariance matrix. We then
compute an orthogonal estimator of the subspace spanned by
the first k̂ leading eigenvectors using the CPAST method. In
addition, with the proposed version of the SCPAST method,
we apply a threshold prior to the orthogonalization step to
further enforce the (spectral) sparsity of the eigenvectors.
Finally, we compute the reduced-rank approximation.

C. Constrained Subspace Tracking (CPAST)

We assume that the spectral covariance matrix C(l) ∈
CK×K only varies slowly in time. Hence for C(l) we use
the recursive estimator [16]

Ĉ(l) =

l∑
u=0

γl−ux(u)xH(u) = γĈ(l − 1) + x(l)xH(l) (1)

with the so-called memory parameter 0 ≤ γ ≤ 1 and Ĉ(l) =
0 for l < 0. As subspace tracking methods like PAST [16]
usually aim to estimate the eigen subspace spanned by the
leading eigenvectors of the covariance matrix C(l) we apply
the following singular value decomposition (SVD)

Ĉ(l) = V(l)Λd(l)V
H(l) (2)

to the estimated covariance matrix Ĉ(l) which in general has
rank d ≤ K. The matrices V(l) = [v1(l),v2(l), . . . ,vd(l)]
∈ CK×d and Λd(l) = diag{λ1(l), λ2(l), . . . λd(l)} ∈ Cd×d
would then contain the orthonormal eigenvectors and the
eigenvalues of Ĉ(l) respectively. For spectral complexity
reduction we only retain the first k̂ ≤ d ≤ K eigenvectors.

The CPAST method [17] however is a modification of the
PAST algorithm that ensures the orthonormality of the K × k̂
sized estimator V̂(l) of the eigenvector matrix V(l). Using the
iteratively estimated covariance matrix Ĉ(l) and some initial
approximation V̂(0) = V̂0, the CPAST method consists of
two steps:

Multiplication step: we compute the K × k̂ matrix

Ĝ(l) = Ĉ(l)V̂(l − 1). (3)
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Figure 1: CQT spectrograms of mixture signal s(n) and melody signals t(n) for different parameter settings. Note that
SCPAST delivers a sparse representation of the most relevant harmonics of the melody voice t(n).

Orthogonalization step: update the estimator V̂(l) of the
matrix V(l) containing k̂ leading eigenvectors according to

V̂(l) = Ĝ(l)[ĜH(l)Ĝ(l)]−1/2. (4)

Note that the CPAST method may be regarded as an on-line
version of the classical orthogonal iteration method [20].

D. Sparse Constrained Subspace Tracking (SCPAST)

The spectra of music signals and especially their first
eigenvectors exhibit a rather sparse structure. Therefore we
suggest to impose sparsity assumptions on the columns of
the eigenvector matrix. Inspired by [21], the SCPAST method
[18] introduces an additional thresholding step which further
enforces this sparsity by suppressing small components of the
estimated eigenvectors. It is implemented as follows:

Multiplication step: we compute the K × k̂ matrix

Ĝ(l) = Ĉ(l)V̂(l − 1) =
[
ĝ1, ĝ2, . . . , ĝk̂

]
. (5)

Thresholding step: for each column vector ĝi of Ĝ(l) we
determine a signal-dependent thresholding parameter β̂i > 0
and apply a threshold function g(x, β) to the respective vector
elements ĝji. Possible thresholding methods are hard (gH ) and
soft thresholding (gS) [21]:

gH(x, β) =

{
0, |x| ≤ β
x, |x| > β

; gS(x, β) =


0, |x| ≤ β
x− β, x > β

x+ β, x < −β
We compute β̂i such that all entries of the respective column
vector ĝi with a magnitude below the particular quantile,
defined by the level qthr ∈ [0, 1], are set to zero: β̂i =
ĝi(bqthr·Kc), where ĝi(k) is the k-th largest (in absolute value)
component of the vector ĝi. Hence, with this thresholding
parameter β̂i we obtain the thresholded matrix

Ĝthr(l) =
[
ĝthr,1, . . . , ĝthr,k̂

]
, ĝthr,i = g(ĝi, β̂i). (6)

For qthr = 0 we fall back to CPAST as a baseline method for
SCPAST as in this case β̂i is also set to 0 and thus thresholding
is disabled.

Orthogonalization step: update V̂(l) according to

V̂(l) = Ĝthr(l)[Ĝ
H
thr(l)Ĝthr(l)]

−1/2. (7)

Note that introducing the thresholding step after the multipli-
cation step leads to sparse estimators (see [21], [18]). We gain

the reduced spectrum by projecting the original spectrum to
the thresholded estimates of its rank-reduced eigen subspace

x̂(l) =
(
V̂(l)V̂H(l)

)
x(l) (8)

and finally apply the inverse CQT [22] to transform the sim-
plified CQT spectra x̂(l) back to time domain and reconstruct
the resulting signal ŝk̂(n) using the overlap-add method.

A detailed derivation and a convergence analysis of the
SCPAST method can be found in [18]. Instead of initializing
the estimated eigenvector matrix V̂0 using values from the
first l0 observations as proposed in [18], we set l0 = 0 and
obtain V̂0 = [Ik̂,0k̂,K−k̂]

T ∈ RK×k̂ as an initial estimate
of the eigenvector matrix V̂. Then (3) and (5) each yield a
projection matrix Ĝ(0) which is formed by the first k̂ column
vectors of the estimated covariance matrix Ĉ(0) of the first
signal frame.

In the proposed procedure the thresholding parameter has
to be fixed in advance. A fully adaptive procedure would
include data-driven estimation of the quantile level e.g. using
covariance and noise level estimation [23], [24]. Although (4)
and (7) comprise inversion operations, the resulting compu-
tational effort is manageable as in our complexity reduction
application only small matrices (k̂ × k̂) are involved. Due to
its iterative structure and in contrast to the PCA-based spectral
complexity reduction method, the proposed method is suitable
for low-latency on-line processing of music signals and has
been succesfully implemented in real-time on a standard PC.

III. EXPERIMENTAL SETUP

To evaluate the proposed spectral complexity reduction
method we process 110 excerpts, each with a length of 10 s,
from a database of classical chamber music MIDI files that
each consist of a leading and accompanying voices [13]. The
audio signals were created using high quality samples from
the Native Instruments Komplete1 package, that are based on
recordings of real instruments. The melody and accompani-
ment signals t(n) and i(n) of each piece were generated
individually and are normalized to equal signal energy so they
add up to s(n) at 0 dB input SIR. This leads to both a realistic
volume ratio of both voices and a simple interpretation of the
source separation measures.

1Komplete 9, 2013, https://www.native-instruments.com
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A. Signal Quality Measures

We employ established signal quality measures such
as signal-to-interferer-ratio (SIR) and signal-to-artifacts-ratio
(SAR) [25] to evaluate the accompaniment attenuation and
the distortion of the leading voice, respectively. To this end
we processed the mixture signals ŝk̂(n) as well as the clean
melody and accompaniment signals t(n) and i(n) by pro-
jecting their respective spectra onto the rank-reduced eigen
subspace estimates of the mixture. This projection is a linear
operation. In this way, besides the reduced mixture signals
ŝ(n) we also obtain the reduced melody and accompaniment
signals t̂(n) and î(n) and do not need to estimate them in
order to analyze interference suppression and signal distortion
introduced by processing artifacts. Thus, the SIR measure is
defined as

SIR = 10 log10

(∑
n t

2(n)∑
n î

2(n)

)
. (9)

With a slight deviation from [25] we define the signal-to-
artifacts-ratio as the logarithm of the energy ratio between the
clean melody signal and residual error signal after processing:

SAR = 10 log10

( ∑
n t

2(n)∑
n(t̂(n)− t(n))2

)
. (10)

B. Auditory Distortion Measure

The aforementioned source separation measures describe
the attenuation of the accompaniment and the emphasis on the
leading voice, which had been shown to facilitate the access
to music for CI users [6], [7], [8], [9], [11]. However, these
measures do not account for auditory distortions which occur
due to the reduced frequency selectivity of electric stimulation.
Therefore, we also evaluate our method using the auditory dis-
tortion ratio (ADR) measure [13], [26]. This measure is based
on a spectral smearing technique which mimicks broadened
auditory filters [27]. Thus, the ADR measure is defined as

ADR(k) = 10 log

( ∑
n[s(n)− s̃(n)]2∑

n

[
ŝk̂(n)− s̃k̂(n)

]2
)
dB. (11)

It compares the energy ratio between the errors of the original
and the spectrally smeared versions s(n) and s̃(n) of the
unprocessed signal in the numerator and the original and the
spectrally smeared versions ŝk̂(n) and s̃k̂(n) of the processed
signal in the denominator, respectively. Positive ADR values
indicate an improvement in auditory distortion in terms of
spectral smearing. As the ADR measures the distortion of
relatively weak higher-order harmonics, the resulting values
in dB are rather small, e.g. in comparison to SIR and SAR
values.

IV. EXPERIMENTAL RESULTS

Figure 1 shows CQT spectrograms of the original and
processed versions with different parameter settings for one
file from the chamber music database: with a decreasing
number of leading eigenvectors k̂ the spectrograms (1b-1c)
become more sparse than the original (1a). This sparsity is

10 20 30
0

2

4

6

8

10

SI
R

/d
B

Number of leading
eigenvectors k̂

q

q

q

CPAST

thr

thr

thr
= 0.90

= 0.94

= 0.96

(a) SIR

10 20 30
0

5

10

15

20

25

SA
R

/d
B

Number of leading
eigenvectors k̂q

(b) SAR

Figure 2: Signal-to-interference ratio (SIR) and signal-to-
artifacts ratio (SAR) for memory parameter γ = 0.95 and
soft thresholding, averaged over 110 pieces.

further increased with the thresholding quantile level qthr. For
qthr = 0.90 (1d) it mostly features the strongest harmonics of
the leading voice (1e).

A. Signal Quality Measures

In Figure 2a the signal-to-interference ratio (SIR) averaged
over all 110 pieces in the database is depicted for a selection
of four thresholding quantile levels qthr with soft thresholding
and a memory parameter of γ = 0.95. As higher SIR
values denote a higher attenuation of the accompaniment,
we obtain increased attenuation for small numbers of leading
eigenvectors k̂ as desired. It also becomes obvious that starting
from qthr = 0 (CPAST) higher thresholding levels lead to a
further improvement in the accompaniment attenuation up to
9 dB. However, our initial experiments also showed that with
a very high thresholding (qthr ≥ 0.97) a reconstruction of
the reduced spectra is no longer achievable for most of the
processed signals as under this condition the resulting spectra
become too sparse.

The diagram in Figure 2b shows the mean signal-to-
artifacts-ratio (SAR) for all 110 pieces in the database de-
pending on the number of leading eigenvectors k̂ and mul-
tiple threshold levels qthr, again with a memory parameter
of γ = 0.95 and soft thresholding. A stronger complexity
reduction with smaller k̂ implies a higher amount of artifacts as
the SAR values decline towards SAR ≈ 3 dB. For increasing
thresholding levels the improved accompaniment attenuation
comes at the expense of lower SAR values and thus distortion
of the melody signal. In the practically relevant parameter
range of 3 ≤ k̂ ≤ 15 only minor changes in SAR between
different thresholding settings are observed.

B. Auditory Distortion Results

Figure 3 depicts the auditory distortion ratios (ADR) for the
PCA, CPAST and SCPAST methods for varying numbers of
leading eigenvectors k̂ grouped by the thresholding level qthr.
Smaller values of k̂ and higher thresholds qthr each lead to
higher ADR values as they both reduce the spectral complexity
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of a signal. In comparison we find that the unconstrained
CPAST method (qthr = 0) leads to slightly lower average
ADR results than the PCA method. However, the sparsity-
constrained SCPAST method (qthr ≥ 0.9) outperforms CPAST
and also PCA in terms of the ADR measure. Listening exper-
iments for the PCA method revealed the range of 3 ≤ k̂ ≤ 15
to be relevant for practical use [14]. With SCPAST we gain
increases in median ADR of 0.4 . . . 0.6 dB relative to PCA
and of 0.5 . . . 1.0 dB relative to CPAST. These outcomes
indicate an improvement in auditory distortion resulting from
the additionally enforced sparseness both in comparison with
the unprocessed signals (ADR = 0 dB) and with the PCA and
CPAST methods.

V. CONCLUSIONS

In this paper we presented a new spectral complexity
reduction scheme for music signals based on subspace tracking
methods and adaptive thresholding which serves to improve
music enjoyment in CI users. We demonstrated that we can
achieve results comparable to previously proposed PCA-based
methods both in accompaniment attenuation and sound quality.
In addition, instrumental measures predict an improvement in
auditory distortion due to the introduced spectral sparsity con-
straint. The new SCPAST-based method relies on an iterative
estimation of the spectral covariance matrices and demands
less complex computations. Therefore, in contrast to the PCA
method, it allows real-time and low-latency on-line processing.
Regarding the promising outcomes from the instrumental mea-
sures, in ongoing works we will validate the performance of
the SCPAST-based spectral complexity reduction in listening
experiments with CI listeners and with additional musical
genres comprising also vocals and percussion instruments.
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