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Abstract—This work investigates the use of convolutional
neural networks for classifying ship targets from images acquired
by the Multi-Spectral Instrument sensor on board Sentinel-2
satellites. An automatic procedure, requiring a minimum amount
of supervision, is applied to extract labeled target images which
are used for training. The data set consists of top of the
atmosphere reflectance images in three visible channels and one
near-infrared band. The performance of the classifier is evaluated
by the receiver operating characteristic curve and the area
under the curve statistics. The results show good classification
performance with area under the curve greater than 0.95. Future
work will be focused on investigating the impact of image
atmospheric corrections and on comparing with other methods.

Index Terms—Machine Learning, Ship classification, Satellite
imaging

I. INTRODUCTION

In the context of maritime situational awareness (MSA),
automatic ship target detection and classification from space-
borne multi-spectral images is still an open problem. The
authors of a recent literature review on the topic [1], analyzing
more than 100 papers in the period from 1978 to 2017,
found several criticalities and propose some guidelines for
researchers aimed at studying new methods. In particular, most
of the reviewed studies using supervised machine learning
techniques, are based on small training data sets, cover a
limited range of acquisition conditions, and omit suitable
quantitative performance assessment making the comparison
among methods impossible. Moreover, a fraction of the au-
thors use preprocessed data from public databases with de-
graded spatial, spectral and radiometric information. The lack
of use of multi-modal target data sets in terms of sensor diver-
sity, multi-temporal acquisitions and multi-spectral channels
is an additional limitation of these studies. Furthermore, no
rigorous studies were conducted to evaluate the impact that
the sensor characteristics, the sea state, the atmosphere, the
ship kinematic state, and the ship reflectivity properties have
on the detection and classification performance.

Taking into account the future research guidelines in [1], this
paper aims at evaluating the effectiveness and the flexibility
of convolutional neural networks (CNN) classifiers [2] [3] on
a well refined training data set, trying to overcome some of
the above drawbacks. A data set of labeled ship targets that is
representative for a wide range of environmental conditions,
viewing geometries and ship types has been collected by
automatically processing Sentinel 2 multi-spectral instrument
(MSI) data. An automatic target detection algorithm [4] is used

to extract target images which are associated to automatic iden-
tification system (AIS) data in order to extract multi-spectral
ship signatures with attached AIS text attributes and kinematic
information. The data are not atmospherically corrected, so the
impact of the atmosphere on the classification performance is
not investigated in this paper.

The data set is used to asses the performance of CNN
classifiers which are able to directly process an input image
without the preliminary step of extracting image features, such
as in support vector machines (SVMs) which are the state
of the art in satellite multi-spectral image classification, as
reported in [1]. A CNN is able to jointly perform feature
extraction and classification by a series of multi-dimensional
and multi-scale spatial filter banks which are optimized by
minimizing a loss function on the training set. The network
can be also considered as a supervised method to extract image
features which can be used later by a different classification
algorithm.

Several examples of classifiers will be provided such as
a basic ship/non-ship binary classifier and a classifier to
discriminate ships navigating at a speed greater than a given
threshold. Classifier performance is evaluated by the receiver
operating characteristic (ROC) curve and the area under the
ROC curve (AUC) statistics which are computed on training,
validation and test sets so as to estimate the behavior of the
system in case of unforeseen data and check the presence
of over-fitting. In general, the performance achieved by the
classifiers is good, with estimated AUC greater than 0.95.

The paper is organized as follows. Section II describes AIS
and MSI sensors, the procedure for data labeling and the
data set used to train the classifiers, while section III briefly
introduces ship classification and CNNs. Section IV provides
the results, showing the performance metrics, while section V
draws the conclusion and suggests future research directions.

II. SENSORS AND DATA SETS

This work makes use of data from two sources: the AIS and
the MSI. Data from the two systems are fused to automatically
extract training data sets by using the procedure detailed
below.

A. The AIS

The AIS [5] is a self-reporting system, used by vessel traffic
services, that allows vessels to broadcast their identification
code (the Maritime Mobile Service Identity (MMSI) number),
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characteristics (e.g. ship type, size, navigational status), posi-
tion, speed, course over ground, destination and estimated time
of arrival. AIS messages are periodically broadcast and they
are received by other vessels equipped with AIS transceivers,
as well as by ground stations and satellite platforms. Historical
data bases of AIS messages are available for vessel traffic
analysis and are exploited in this work to implement the
labeling procedure.

B. The MSI

The MSI is a pushbroom multi-spectral passive imaging
sensor on board the European Space Agency (ESA) Sentinel
2 satellite constellation used for Earth observation [6]. The
constellation consists of two polar orbiting satellites, 2A and
2B, placed on the same orbit and phased at 180◦ to each
other. The revisit time with two satellites is 10 days at the
equator and 2 to 3 days at mid-latitude. The latitude coverage
is between 56◦S and 84◦N and the swath width is 290Km.

The MSI sensor acquires the solar radiation from the Earth
surface and the atmosphere in 13 spectral bands, four bands
at spatial resolution ∆R = 10m, six bands at ∆R = 20m
and three bands at ∆R = 60m, with a radiometric resolu-
tion of 12bits. The channels at ∆R = 10m are the most
interesting ones for ship classification. Table I [7] shows the
characteristics of these channels for the MSI on board Sentinel
2A and 2B, including the central wavelength, λ0, the spectral
resolution, ∆λ, the calibration reference radiance, Lref , and
the signal to noise ratio at the reference radiance, SNR@Lref .
The first 3 channels cover the visible spectrum in the blue,
green and red bands, respectively, while the fourth channel
covers a band in the near infrared (NIR) range. The data

TABLE I
SENTINEL 2 MSI SENSOR CHANNELS

Band
number

S2A S2B Lref

(Wm−2sr−1µm−1)
SNR@Lref

λ0(nm) ∆λ(nm) λ0(nm) ∆λ(nm)
2 492.4 98 492.1 98 128 154
3 559.8 45 559 46 128 168
4 664.6 38 664.9 39 108 142
8 832.8 145 832.9 133 103 174

at 10m resolution are provided as image tiles (or granules)
on a geo-located uniform grid of 10800 by 10800 samples
for each spectral channel and are freely available through the
Copernicus Science Hub (CSH) web site [8].

C. The labeling procedure

The CSH provides an application program interface (API)
to search and download historical MSI images. Given a list
of vessels of interest (VoI), identified by the MMSI codes,
their AIS historical tracks in a given temporal window (e.g.
2 years) are used to define the spatial boundary of the search
in the CSH. The series of images retrieved from the CSH are
expected to contain the VoI as well as other ships.

The data set of labeled ship targets is built by associating
AIS tracks to image contacts obtained by an automatic object
detector. The detector is based on mathematical morphology

non-linear spatial filters and it is described in [4]. The detec-
tion is performed on the NIR band to reduce the interference
of the signal from the sea water body. A sub-image of 46
by 46 samples is extracted around the center of mass (CoM)
of the detected object, for each channel at ∆R = 10m. The
CoM Universal Transverse Mercator (UTM) (x, y) position is
then associated to an AIS track using a minimum distance
criterion with a threshold on the maximum distance equal to
300m. The sub-images are then labeled by using the data in
the AIS message of the associated tracks. The information
associated to each ship contact include the MMSI, the ship
type and size, the speed over ground (SOG), the course over
ground (COG), the position of the ship at the image acquisition
time (linearly interpolated), the navigational status and the ship
draught. A final visual inspection is performed to refine the
data set and label by a ”no-ship” flag the residual false alarms
due to association errors.

The final dataset consists of about 6000 ship targets and
about 2000 non-ship objects. Figure 1 shows on the left
the type of ship targets while on the right the navigational
status flag. The data set is representative for targets of type
”Cargo” and ”Tanker” with about 3000 and 2000 contacts per
type, respectively. These two classes are broad and a finer
categorization is possible as shown in the next sections. As
far as the navigational status concerns, ships under way using
engine are roughly 3800 while approximately 2000 ships are
observed at anchor. Figure 2 shows the distribution of target

Fig. 1. Ship type and navigational status of targets detected from the Sentinel
2 MSI sensor and associated to AIS tracks

length, and width. The data set is representative for a wide
range of ship lengths ranging from few meters to 400m.
Figure 3 displays the spatial distribution of the associated ship

Fig. 2. Ship parameters of targets detected from the Sentinel 2 MSI sensor
and associated to AIS tracks

contacts at global level as well as over sub-regions where the
contacts are distributed along typical sea lanes.
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Fig. 3. Spatial distribution of targets detected from the Sentinel 2 MSI sensor
and associated to AIS tracks

III. SHIP CLASSIFICATION

A. Classification tasks and training data sets

In order to show the flexibility of the proposed approach, a
set of example classifiers are implemented by training a CNN
on the labeled target signatures described in section II. The
tasks performed by the considered classifiers include:

- a binary ship/no-ship low level classifier,
- a binary low-speed classifier,
- a 4 class COG quadrant classifier and
- a 4 class ship type classifier.

The ship/no-ship classifier is a low level classifier that is used
to discriminate between ship targets and non-ship targets like
clouds. The other ones are applied afterward to understand
some additional properties of the target, acquiring a rough idea
of the navigational status (an information that is correlated to
the presence of a ship wake) and the identity.

Specific training sets are built for each task. Concerning the
low level classifier, 2000 ”no-ship” targets and 2000 ”ship”
targets were extracted from the main data set. Then 50% of
the samples of each class were assigned to the training set,
25% to the validation set and 25% to the test set. Regarding
the low speed classifier, a data set of ship targets longer than
200m was first extracted. This set was split in two classes
of 1100 samples for each class by using a 1Knot threshold
on the SOG. Finally, 70% of the samples were assigned to
the training set, 15% to the validation set and the remaining
15% to the test set. For the COG quadrant classification task,
250 ship targets for each quadrant (Q1 = Northern-Eastern,
Q2 = Northern-Western, Q3 = Southern-Western and Q4 =
South-Eastern quadrants) were picked at random. Then 60%
of the samples were assigned to the training set, 20% to the
validation set and the other 20% to the test set. The data set for
ship type classification was extracted by searching for targets
in a given list of vessels. In particular, four groups of ships
are taken into account:

- a fleet of cargo ships of a given shipping company,
- a group of liquid natural gas (LNG) tankers of the

spherical Moss type,
- a fleet of roll-on/roll-off (RORO) vehicle carrier ships

and
- a set of very large crude carriers (VLCC) and ultra large

crude carriers (ULCC) oil tankers.
Ships in each group share similar structural characteristics and
spectral signatures (see Fig. 4). The size of each group is of

75, 33, 99 and 104 target images, respectively. The 30% of the
targets were assigned to the training set, 35% to the validation
set and the other 35% to the test set. The training set is finally
augmented as described in section III-C to reduce the effects
of small sample over-fitting phenomena. Due to the small size
of this data set the results obtained on the ship type classifier
are not definitive. Further investigations will be conducted in
the future by collecting additional samples.

(a) Cargo

(b) LNG Moss-Spherical

Fig. 4. Ship target spectral signatures from the Sentinel 2 MSI sensor. For
each ship type and from left to right, the figure displays the target in the blue,
green, red and NIR channels.

B. Overview of CNNs

A deep neural network can be defined as a series of nested
input-output function layers where the ith layer processes the
output yi−1 from the previous one by applying an affine
transformation and a non-linear function as follows [3]:

yi = g(W iyi−1 + bi) i = 1, . . . , L, (1)

where y0 is the input data vector while yL is the output one;
W i is a weight matrix, bi is a bias vector and g is a non linear
activation function, such as the rectified linear unit (ReLU),
g(zij) = max{0, zij}, applied to the j− th component of the
transformed vector zi = W iyi−1 + bi.

A CNN [2] [3] is a network that jointly optimizes image
feature extraction and classification. The network consists of
a number of convolutional layers (CL), each layer processes
the inputs from the previous layer by a bank of multi-
dimensional linear filters followed by bias summation, non-
linear activations (e.g. ReLUs) and a pooling layer to down-
sample filter outputs by a given rate in order to calculate multi-
scale features and simplify the complexity of the network.
Being the convolution a linear operator, a CNN layer can be
considered equivalent to (1). The convolutional front-end acts
as a multi-scale non-linear feature extraction system, similarly
to a linear wavelet transform filter bank [9], which learns
features at progressively larger scales isolating details of the
input image which are semantically meaningful [10].

The outputs of the final CL are lexicographically ordered
in a vector and successively processed by a series of fully
connected layers (FCL), or dense layers (DL), each followed
by a bias summation layer and ReLU activations as well.
Typically, the last two layers of a classifier include a DL with
a number of outputs equal to the number of classes, followed
by a soft-max layer to provide a probability distribution vector

2019 27th European Signal Processing Conference (EUSIPCO)



over the classes. The output class is decided, for instance, by
applying the max rule on the estimated probabilities.

Some of the layers in the network can be followed by a
dropout layer which implements a regularization technique
to reduce over-fitting phenomena. The technique consists in
multiplying by zero a subset of the previous layer activation
outputs, with a given probability [11].

The parameters of the network, W i and bi, for each layer,
are learned by minimizing a given loss function over a set
of input-image/output-label pairs. In this work, the adaptive
moments (ADAM) stochastic gradient algorithm is chosen as
optimizer [12], with a constant learning rate equal to 10−3 and
a maximum number of epochs between 50 and 200. In order
to speed up the training phase, the loss gradient is evaluated
at each iteration on a minibatch [3] of training samples of size
100. The loss to be optimized is the cross entropy function for
Kmutually exclusive classes which is defined as:

H =
N∑
i=1

K∑
j=1

cij ln(pij), (2)

where N is the number of input/output training samples, cij
is 1 if the ith sample belong to the jth class, 0 otherwise, and
pij is the soft-max (probability) output of the ith sample for
the jth class. Alternatively, a weighted cross entropy loss can
be considered.
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Fig. 5. CNN structure.

In this work, instead of using a pre-trained deep CNN, such
as the AlexNet [13], and applying the technique of transfer
learning [13] [14] to speed up the training phase, a CNN that
can be trained from scratch in a reasonable amount of time
(less than 12 hours), even without using a GPU, is preferred
in order to test the performance that a simpler not pre-trained
network can achieve on the considered data set. Figure 5
shows the architecture of the network used in this work. This
is characterized by 3 convolutional layers with 16 filters of
size 2 × 2. The first two CLs are followed by normalization,
ReLU activation and max pooling layers, while the last one
has a dropout layer in place of the max pooling one. The
dropout layer is followed by three DLs with 16 outputs. The
first two DLs are followed by a ReLU and dropout. The third is
followed by a ReLU that feeds the input of the final classifier
DL and a softmax layer. The performance of this basic struc-
ture is improved by additional layers (not displayed in Fig. 5)
that transfer higher resolution features to the output by using
additional DLs and a combination node. The network hyper-
parameters (e.g. the size of the convolutional linear filters
and the dropout probability) have been set heuristically by

a trial and error procedure. Optimization of hyper-parameters
in a more rigorous way (e.g. using cross validation) will be
investigated in a future work on suitable hardware.

C. Mitigation of over-fitting due to small data sets

Over-fitting due to small sample is further reduced by
augmenting the training sets. The augmentation procedure
consists in applying random geometric and pixel-wise value
transformations to the training images to produce new samples.
In this work, the image transformations include:

- random translation of a maximum amount of 3 pixels in
both spatial directions,

- random spatial scaling with a scale factor between 0.8
and 1.2 on both directions,

- random rotations between 0 and 30 deg (not applied in
the case of COG classifier)

- and random scaling of pixel values with a factor between
0.8 and 1.2.

D. Performance evaluation

Binary classifier performance is evaluated by ROC curves
which display the classifier true positive rate (TPR) versus the
false positive rate (FPR), for several values of the decision
threshold applied to the network score of the positive class.
For multi-class problems the ROC curve is estimated by
taking one class as positive while the remaining ones are
joined in a single negative class. The classification score used
to estimate the ROC curve in this case is re-computed as
mi = pi − maxj 6=i(pj), where i, j = 1, . . . ,K, i is the
index of the chosen positive class, and pi is the score at the
output of the classifier for the ith class. A bootstrap method
is then used to estimate ROC curves and AUC confidence
intervals allowing testing if the trained classifier statistically
outperforms the TPR = FPR classifier with AUC = 0.5.

IV. RESULTS

This section shows the performance of low-level and high-
level CNN classifiers, which were trained using the data
sets described in section III-A. Table II summarize the AUC
statistics of the four classifiers, i.e. the AUC point estimation
and AUC 95% confidence intervals (CI). Figure 6a shows the
ROC curves and the associated 95% CIs of the ship/no-ship
low level classifier estimated for the training, validation and
test sets. The estimated 95% CI of the AUC is (0.954, 0.986)
for the validation set, (0.940, 0.976) for the test set and
(0.985, 0.998) for the training set, with AUC point estimation
of 0.975, 0.962 and 0.995, respectively. Figure 6b shows
the same curves for the low speed classifier. The estimated
95% CI of the AUC is (0.914, 0.969) for the validation
set, (0.940, 0.978) for the test set and (0.995, 0.999) for the
training set, with AUC point estimation of 0.952, 0.962 and
0.998, respectively. The ROC curves of the 4-class COG
quadrant classifier for the three data sets are displayed in Fig.
6c. The graph is relative to the Q1 class taken as positive
while the remaining ones are considered as a single negative
class as described in section III-D. The estimated 95% CI
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(a) Ship/no-ship (b) Low speed

(c) COG quadrant (d) Ship type

Fig. 6. Classifer ROC curves

of the AUC in this case is (0.945, 0.996) for the validation
set, (0.932, 0.992) for the test set and (0.997, 0.999) for the
training set, with AUC point estimation of 0.983, 0.974 and
0.998, respectively. Similar results were obtained taking the
Q2, Q3 and Q4 quadrants as positive classes. Finally, the
performance of the 4-class ship-type classifier is displayed in
Fig. 6d for the ”Cargo” class taken as positive. The estimated
95% CI of the AUC is (0.956, 0.996) for the validation set,
(0.984, 1) for the test set and (0.994, 0.999) for the training
set, with AUC point estimation of 0.986, 0.998 and 0.997,
respectively. Similar performance is achieved when the other
classes are considered as positive. In general, the performance
of the proposed CNN structure is good with an estimated AUC
greater than 0.95 in all the cases taken into account.

TABLE II
SUMMARY OF AUC STATISTICS

Training set Validation set Test set
AUC / 95% CI AUC / 95% CI AUC / 95% CI

Ship/No-ship 0.995 / (0.985, 0.998) 0.975 / (0.954, 0.986) 0.962 / (0.940, 0.976)
Low speed 0.998 / (0.995, 0.999) 0.952 / (0.914, 0.969) 0.962 / (0.940, 0.978)
COG Quadrant 0.998 / (0.997, 0.999) 0.983 / (0.945, 0.996) 0.974 / (0.932, 0.992)
Ship type 0.997 / (0.994, 0.999) 0.986 / (0.956, 0.996) 0.998 / (0.984, 1)

V. CONCLUSION

This paper investigates the performance of CNNs to classify
ship targets from the MSI sensor on board the Sentinel 2
satellite. The study is based on a training data set collected by
labeling target images by an automatic procedure requiring a
minimum amount of supervision. The classifiers considered in
the paper as examples show good performance. In particular
the ship/non-ship classifier is characterized by an AUC of
0.975 with 95% confidence levels of 0.954 and 0.986 on the
validation set. Performance of the same order was observed
in high level classifiers and in particular in the classifier for

discriminating fleets of sister vessels. This one requires to be
further investigated by improving the training set.

In general, CNNs are a flexible and effective method to
classify ship targets from space-borne multi-spectral images
and it is worth to further investigate this technique according
to [1]. In particular, future work will be focused on studying
the effects of the atmosphere on classification performance
and on augmenting training data sets by using models of
the atmospheric radiance to simulate physically observable
atmospheric image signals. Moreover, comparison with non-
deep learning methods, such as SVMs, will be investigated and
a deeper analysis of classification errors will be performed.
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