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Abstract—Edge and cloud computing has recently emerged
not only to meet the ever-increasing computation demands, but
also to provide extra degree of diversity by collecting data from
the mobile devices in service. However, this, in turn, has raised
new technical challenges on the security issue, and calls for the
design of new frameworks to exploit multi-device diversity. In this
paper, we take the advantage of this benefit while preserving the
privacy. Specifically, 1). To address the privacy issue, we develop
a low-complexity encrypting algorithm based on random unitary
transform, where it is proved both theoretically and through
simulation that such encryption will not affect the result of face
recognition. 2). To exploit multi-device diversity, we integrate the
recognition results based on the dictionaries of each device into an
aggregated output through ensemble learning, which has shown
higher correctness of predictability than any individual methods.
The designed framework not only contributes to the reduction
of computation complexity at each device, but also proves to be
effective and robust through simulation results.

I. INTRODUCTION

Face recognition has long been an active area of research
due to both the scientific challenge and its practical signif-
icance in a wide range of practical applications and future
network paradigms, e.g., virtual reality applications and the
Internet of Things (IoT) network. Significant theoretical and
experimental research has been done to address this issue.
With inspiration from the sparsity mechanism of the human
vision system, the sparse representation based classification
algorithms have received large attention [1]. [2] adopts K-
Singular Value Decomposition (K-SVD) algorithm to learn
a feature dictionary, next applies Orthogonal Matching Pur-
suit (OMP) to find the sparse representation of the testing
image, then uses Support-Vector Machines (SVM) for face
recognition. Another commonly adopted technique for face
recognition is deep learning, which has been proved to be
effective in extracting deep hierarchical features [3]. [4] adopt-
s deep model, i.e., ConvNets, to extract high-level visual
features, which can be used for improving the performance
of face recognition. However, these techniques pose exigent
requirements on computation capability, which cannot be
easily satisfied by solely relying on mobile devices due to
their limited computation resource.

Edge and cloud computing is emerged as a promising
technology to provide cloud-computing capabilities at the
edge of pervasive radio access networks in close proximity to
mobile users, while reducing the traffic bottlenecks between
edge and cloud in the core and backhaul networks [5]. In

the literature, [6], [7] improve the computation efficiency of
face recognition by offloading a part of the computation tasks
to the edge and cloud. However, such strategies suffer from
one major drawback, i.e., they use the edge and cloud simply
to accelerate the computation, while neglecting the potential
diversity provided by multiple devices. To exploit more di-
mensions of the network resources for not only satisfying the
computation demands, but also improving the performance of
face recognition, we allow the cloud to produce a joint face
recognition result through combining the results based on the
dictionaries from each device. We take one step further and
try to study What is the fundamental benefit of exploiting
the multi-device diversity? In the meantime, it is of great
significance to prevent privacy leakage, especially when we
allow the sharing of computing results by the cloud.

In this paper, we develop a framework for edge and cloud-
aided face recognition based on privacy preserving sparse
representation. The motivation and main contributions are
summarized as follows,

1) Preserve the privacy by random unitary transform:
Involved encrypting algorithms should ensure that dic-
tionaries/recognition results can be trained/drawn from
the encrypted images. Commonly adopted method that
allows computation on ciphertexts, such as Homomor-
phic Encryption (HE) and secure Multi-Party Computa-
tion (MPC), is faced with the curse of dimensionality.
To address this problem, we develop a low-complexity
encrypting algorithm based on random unitary transfor-
m, where it is proved both theoretically and through
simulation that such encryption will not affect the result
of face recognition.

2) Exploit multi-device diversity by ensemble learning:
The performance of the dictionary-based face recogni-
tion algorithms relies heavily on the number of training
samples, where the excessive cost of bandwidth and
storage makes it difficult to gather all the training
samples at the cloud. Alternatively, with the diversity
provided by the cloud, we integrate only the recognition
results based on the dictionaries from each device into
an aggregated output through ensemble learning, which
proves to be effective and robust through simulation
results.

The rest of this paper is organized as follows. Section II
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Fig. 1. Architecture of the edge and cloud-aided system

presents the system model. In Section III, we propose the edge
and cloud-aided face recognition framework based on secure
sparse representation. Following this, the performance of the
proposed algorithm is evaluated in Sections IV. Finally, this
paper concludes with Section V.

II. SYSTEM MODEL

In this section, we first introduce the architecture of the edge
and cloud-aided system. After discussing the method for face
recognition based on sparse representation, we formulate the
optimization problem under privacy preserving constraints.

A. Edge and Cloud-aided System

Consider an edge and cloud system as shown in Fig. 1,
where N single core mobile devices, denoted as set N , are
assisted by M edge servers, denoted as setM, and one remote
cloud server C. The mobile devices are running applications
involving face recognition1, such as interactive gaming and
virtual reality applications [5]. Among mobile devices in N , L
classes of person are to be recognized, denoted as L, and each
mobile device j ∈ N has bji training samples for class i ∈ L,
denoted as Bji [8]. Each edge server inM is a light computing
center deployed at a wireless access point, while a remote
cloud is equipped with a stronger processor and connects with
edge servers using the backbone network [9].

In the edge and cloud-aided computing scenario, a mobile
device will offload its computation tasks to the edge server
in close proximity via wireless channels2. The edge servers
together with the cloud server will execute the computation
tasks on behalf of the mobile device.

B. Sparse Representation for Face Images

The face recognition problem is defined as, using labeled
training samples from L distinct classes to determine the class
to which a new testing sample belongs. In order to achieve this

1All the captured images are pre-processed by the mobile devices, i.e.,
images are segmented into fine-grained head pictures [8].

2Some physical layer access scheme, e.g., Code Division Multiple Access
(CDMA), is adopted to allow multiple devices to share the same edge server
simultaneously and efficiently. There are also existing algorithms for the
matching between mobile devices and edge servers based on their channel
quality [9]. In this paper, we assume such matching is accomplished during
network setup period.

goal, we adopt the face subspace model [8], which is formally
defined as follows,

Definition 1 (Face Subspace Model). Given the training
samples Bji , i ∈ L, j ∈ N , each of which can be expressed as a
column vector dj(i,n) ∈ Rm×1, n ∈ {1, 2, · · · , bji} by stacking
its columns. A dictionary Dj

i can be formulated accordingly

as Dj
i =

[
dj(i,1),d

j
(i,2), · · · ,d

j

(i,bji )

]
∈ Rm×bji . Any testing

sample from the same class yj
i ∈ Rm×1 approximately lies

in the subspace spanned by Bji , which can be expressed as
follows

yj
i =Dj

iX
j
i , (1)

where Xj
i =

[
xj(i,1), x

j
(i,2), · · · , x

j

(i,bji )

]T
∈ Rbji×1 is the

weight of each component.

Note that the face subspace model is flexible enough to
capture much of the variation in real data sets, and proved to
be effective in the context of face recognition.

By grouping samples from all the classes L for device j ∈
N , a dictionary Dj is formulated as follows,

Dj =
[
Dj

1,D
j
2, · · · ,D

j
L

]
. (2)

According to Definition. 1, any testing image yj , j ∈ N can
be sparsely represented over the dictionary Dj ,

yj =DjXj , (3)

where Xj =
[
Xj

1 ;X
j
2 ; · · · ;X

j
L

]
∈ R

∑
i b

j
i×1 is the sparse

coefficient.
If
∑

i∈L b
j
i > m and Dj is a full-rank matrix, then Eq.

(3) is under-determined, such that its solution is not unique.
Alternatively, this difficulty can be resolved by solving the
following l1-minimization problem,

(P0) X̂j = argmin
Xj

∣∣∣∣DjXj − yj
∣∣∣∣
2

s.t. ||Xj ||1 ≤ ε,
(4)

where ε represents the sparsity constraint. The above optimiza-
tion problem can be efficiently solved using Matching Pursuit
(MP) or Orthogonal Matching Pursuit (OMP).

C. Problem Formulation

Given a testing sample yj , j ∈ N , we first compute its
sparse representation X̂j by solving P0 in Eq. (4). In the
ideal case, the nonzero entries in X̂j should be associated
with the columns of Dj from a single class. For example,
if X̂j

l = 0,∀l 6= i, then we can easily assign yj to class
i. However, due to noise and modeling error, there exists
small nonzero entries associated with other classes. To address
this problem, define δjl = [0, · · · , 0, 1, · · · , 1, 0, · · · , 0], j ∈
N , l ∈ L, whose nonzero entries not only correspond to the
entries in Xj , but also associate with the l-th class only. Using
merely the coefficients associated with the l-th class, we can
approximate the testing sample yj by Djδjl X̂

j , then classify
yj according to the following optimization problem,

(P1) min
l
rjl (y

j) =
∣∣∣∣yj −Djδjl X̂

j
∣∣∣∣2
2
, (5)
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where rjl (y
j) represents the class specific approximation error.

While such a scheme has been shown to be effective in face
recognition [8], the classifying decision is made based on local
dictionary only, which makes this method vulnerable to noise
and modeling error. In the edge and cloud-aided system, our
objective is to construct a framework to further minimize the
reconstruction error by exploiting the multi-device diversity,
while ensuring the security of the information passing during
the whole process, which can be formally formulated as

(P2) min
l,j

rjl (y
k) =

∣∣∣∣∣∣∣∣yk −Dj
δjl X̃

(j,k)
∣∣∣∣∣∣∣∣2
2

s.t. yk = f(p,yk)

D
j
= f(p,Dj)

rjl (y
k) = rjl (y

k),

(6)

where f(·) is the encrypting function, p is the key for encryp-
tion, and X̃(j,k), j, k ∈ N represents the sparse representation
of yk under D

j
. The first two constraints guarantee the

security of the system, and the last one ensures the algorithm
operating on secured plane without performance loss.

III. EDGE AND CLOUD-AIDED SECURE SPARSE
REPRESENTATION FOR FACE RECOGNITION

In this section, we propose the framework for edge and
cloud-aided secure sparse representation for face recognition.
To satisfy the privacy preserving constraints in Eq. (6), we
briefly introduce random unitary transform and outline three
important properties, based on which we prove that the result
of face recognition will not be influenced. To utilize the multi-
device diversity, we propose a two-stage ensemble learning
framework, 1). The sparse representation and the associated
reconstruction error is calculated according to each dictionary
at the cloud, which serves as a member classifier. 2). These
member classifiers are combined into an aggregated classifier
by solving P2 in Eq. (6) to obtain a refined solution.

A. Random Unitary Transform
In order to not only preserve the privacy of the system, but

also enable algorithms operating on secure plane, the random
unitary transform is one promising method, which is proved
to be effective for biometric template protection and network
Brain Machine Interface (BMI) coding [10], [11].

Any vector v ∈ Rm×1 encrypted by random unitary matrix
Qp ∈ Cm×m with private key p can be expressed as follows,

v = f(p,v) = Qpv, (7)

where v is the encrypted vector, and the unitary matrix Qp

satisfies
Q∗pQp = I, (8)

where [·]∗ and I represents the Hermitian transpose and
identity matrix, respectively. Gram-Schmidt orthogonalization
can be adopted for generating Qp

3. The encrypted vector has
three properties [12] as follows,

3Such encrypting technique has been proved to be robust in terms of brute-
face attack, diversity and irreversibility [13]. The security can be further
enhanced by updating the private key periodically.

User 1
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Encrypted Dictionaries
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Fig. 2. Training: Generating encrypted dictionaries at each edge server

• Conservation of the Euclidean distances

||vi − vj ||22 = ||vi − vj ||22, (9)

• Norm isometry
||v||22 = ||v||22, (10)

• Conservation of inner products

vi × vTj = vi × vTj . (11)

B. Secure Sparse Representation and Recognition

According to random unitary transform, the encrypted train-
ing samples d

j

(i,n) ∈ Rm×1, i ∈ L, j ∈ N , n ∈ {1, 2, · · · , bji}
and testing samples yj , j ∈ N are generated as follows,

d
j

(i,n) = f

(
p,dj(i,n)

)
= Qpd

j
(i,n),

yj = f(p,yj) = Qpy
j .

(12)

According to Eq. (2), the encrypted dictionary D
j
, j ∈ N is

generated as follows,

D
j
= f

(
p,Dj

)
= QpD

j . (13)

To obtain the secure sparse representation, we consider the
following optimization problem operating on secured plane,

(P3) X̃(j,k) = argmin
Xj

∣∣∣∣∣∣Dj
Xj − yk

∣∣∣∣∣∣
2
s.t. ||Xj ||0 ≤ ε.

(14)
It is proved that X̃(j,k) by solving Eq. (14) is exact the same
as X̂(j,k) by solving Eq. (4) [14].

In the following theorem, we prove that the result of face
recognition is not affected as well.

Theorem 1. The result rjl (y
k) by solving Eq. (6) is exact the

same as the result rjl (y
k) by solving

(P4) min
l,j

rjl (y
k) =

∣∣∣∣∣∣∣∣yk −Djδjl X̂
(j,k)

∣∣∣∣∣∣∣∣2
2

. (15)

Proof: Observing rjl (y
k) is usually small, we have

rjl (y
k) = ||yk||22 −

yk
(
D

j
δjl X̂

(j,k))T
||Dj

δjl X̂
(j,k)
||22

. (16)

From the properties of the unitary transform, we have
||yk||22 = ||yk||22,∀j ∈ N (Norm isometry), ykD

j
δjl X̂

(j,k)
=
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Fig. 3. Recognizing: Secure face recognition at the cloud

ykDjδjl X̂
(j,k)

,∀j ∈ N , l ∈ L (Conservation of inner prod-

ucts), and D
j
δjl X̂

(j,k)
=Djδjl X̂

(j,k)
,∀j ∈ N , l ∈ L (Norm

isometry). Therefore, Eq. (16) can be rewritten as follows,

rjl (y
k) = ||yk||22 −

yk
(
Djδjl X̂

(j,k))T
||Djδjl X̂

(j,k)||22
=

∣∣∣∣∣∣∣∣yk −Djδjl X̂
(j,k)

∣∣∣∣∣∣∣∣2
2

,

(17)
which is the same as rjl (y

k) in P4 in Eq. (15).
Therefore, we can safely draw the conclusion that, by adopt-

ing unitary random transform, the designed algorithm operates
on secured plane without any performance degradation.

C. Ensemble Learning Framework
Observing that the training samples are differently and in-

dependently chosen according to different devices, the relative
uniqueness of the information available in each dictionary
prompts the member classifiers to capture different patterns. In
order to take such advantage, we propose an edge and cloud-
aided ensemble learning framework, where the training stage
and recognizing stage are involved.
1) Dictionary Training:

The dictionary training stage consists of three steps, as
shown in Fig. 2. First, each device j ∈ N encrypts all the
training images, and transmits to the designated edge server.
Then, the encrypted dictionary D

j
is formulated according to

Eq. (13). Finally, the encrypted dictionaries D
j
,∀j ∈ N are

transmitted to the remote cloud server.
Since the training samples are not directly transmitted to the

cloud, the amount of required network bandwidth between the
edge servers and the cloud can be notably reduced. 4

2) Face Recognizing:
The face recognizing stage is illustrated in Fig. 3. First, a

device k encrypts the testing image yk, and transmits to the
designated edge server. Next, the edge server transmits the
reformulated encrypted testing image for recognition to the
cloud. Then, each encrypted dictionary serves as a member
classifier of the ensemble learning framework. Upon receiving
a encrypted testing image yk, the each member classifier j ∈
N on the cloud will calculate the sparse representation X̃(j,k)

by solving P3 in Eq. (14). The reconstruction error rjl (y
k) as

well as the classification result are obtained by solving the
secured version of P1 in Eq. (5). Finally, we combine the
results of member classifiers by solving P2 in Eq. (6).

4[8] suggests that the dimension of dictionary for face recognition can be
reduced significantly only with little influence on the performance.

Algorithm 1 Edge and Cloud-aided Secure Sparse Represen-
tation for Face Recognition

1: [Training Stage]
2: Training images dj(i,n) are encrypted according to Eq.

(12), and transmitted to the designated edge server.
3: The edge servers formulate encrypted dictionaries D

j

according to Eq. (13), and upload to the cloud.
4: [Testing Stage]
5: Testing image yk is encrypted according to Eq. (12), and

transmitted to the designated edge server.
6: The edge servers upload the formulated encrypted testing

vector yk to the cloud.
7: Each member classifier j ∈ N finds the sparse represen-

tation X̃(j,k) by solving P3 in Eq. (14) using OMP, and
then calculates reconstruction error rjl (y

k) by solving the
secured version of P1 in Eq. (5) in a parallel manner.

8: The cloud combines the result and generates the recogni-
tion result by solving P2 in Eq. (6).

On the computational complexity of Algorithm 1, the most
time-consuming part is the OMP algorithm in Line 7, in
which the running time is O(maz) for each member clas-
sifier, where m denotes the dimension of the testing image,
a = maxj∈N

∑
i∈L b

j
i represents the number of rows in the

dictionary, and z is the sparsity of the sparse representation.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the pro-
posed framework by simulation. For performance comparison,
we adopt three baseline algorithms,
• Stable Sparse Representation-based Classification (SRC)

by solving the l1-minimization problem in Eq. (4) [8].
• Aggregating the training samples from all the devices in
N , and formulating a Large Dictionary (LD) at the cloud,
and perform SRC for face recognition.

• Combining the results of member classifiers through
Majority Voting (Vote) at the cloud [15].

The Extended YaleB database is one of the commonly used
database for face recognition, the cropped and normalized face
images are captured according to different angles and lighting
conditions [16], [17]. We randomly select 32 images for each
individual as the entire training set while the rest for testing.
For each device, the training samples are randomly selected
from the entire training set with replacement.
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Fig. 4. Security verification
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Fig. 5. Performance evaluation

Fig. 4 demonstrates the privacy-preserving property of the
proposed framework. It is shown that the original image is
difficult to be recognized from the encrypted one, and it would
be computationally expensive to obtain the original image
without the knowledge of the private key.

Fig. 5 provides the performance comparison among the
proposed and baseline algorithms. The proposed algorithm
achieves superior performance than all the baseline algorithms.
First, majority voting, as an universal ensemble approach, does
not perform well, which signifies the importance to design a
good combiner that is related to the optimization problem.
Second, as for the LD algorithm, 1). The computation com-
plexity is O(Nmaz), which is larger than that of the proposed
algorithm. 2.) It requires large bandwidth between edge and
cloud. Third, it is verified that by adopting random unitary
transform, the proposed framework operates on secured plane
without any performance degradation. Finally, as the number
of devices grows, the performance improvement brought by
ensemble learning is significant.

One interesting phenomenon is observed in Table. I. When
we use ensemble learning in the case where one member
classifier has full-knowledge of the entire training set, it is
still possible to further enhance the performance. Moreover,
observing that even though the performance of member clas-
sifier 2 is very weak, the result of ensemble learning is not
influenced, which demonstrates the robustness of the proposed
framework to the existence of a few weak member classifiers.

V. CONCLUSIONS

In this paper, we develop a framework for edge and cloud-
aided face recognition based on secure sparse representation.
To guarantee the privacy, we adopt random unitary transform,
with which algorithms proves to be compatible with the
secured plane. To reduce the computation demands at each
device, the dictionary learning is conducted at each edge
server, and the recognition is accomplished at the cloud. To ex-

TABLE I
RECOGNITION ACCURACY

Device 1 (Entire training set) 0.9430
Device 2 (8 training samples per class) 0.7540
Device 3 (10 training samples per class) 0.8482
Device 4 (10 training samples per class) 0.8491
Device 5 (12 training samples per class) 0.9009

Cloud (Proposed framework) 0.9544

ploit multi-device diversity, we combine only the computation
results of each member classifier into an aggregated output.
Finally, the simulation results verify the secure property as
well as the superiority of the proposed framework.
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