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Abstract— In this work we provide a novel algorithm for
Bayesian Compressive Sensing. The proposed algorithm is
considered for signals that features two properties: grouping
structure and sparsity between groups. The Compressive Sens-
ing problem is formulated using the Bayesian linear model.
Furthermore, the sparsity of the unknown signal is modeled
by a parameterized sparse prior while the inference procedure
is conducted using the Variational Bayesian framework. Ex-
perimental results, using 1D and 2D signals, demonstrate that
the proposed algorithm provides superior performance com-
pared to state-of-the-art Compressive Sensing reconstruction
algorithms.

compressed sensing, group sparsity, parameterized prior,
variational bayesian

I. INTRODUCTION

The notion of sparsity has influenced computer science in a
fundamental way, causing scientists to challenge well estab-
lished ideas. One such case can be considered the framework
of Compressive Sensing (CS) [1], [2]. Compressive Sensing
states that sparse signals can be recovered by using much less
measurements than dictated by Shannon/Nyquist Theorem.
This is achieved by “transferring” information from the
sampling procedure (i.e. Shannon/Nyquist Theorem) to the
underlying structure of the signal (i.e. sparsity). More pre-
cisely, within this framework we use prior information about
the signal to constraint the sampling procedure. However,
CS do not rely only on sparsity but also to the incoherence
and the restricted isometry property (RIP) [2]. The last two
properties discriminate CS from other similar linear inverse
problems such as denconvolution, superresolution, Sparse
Bayesian Learning and the inverse EEG problem.

In the CS framework, we do not measure directly the N -
dimensional signal of interest x, but we obtain M linear mea-
surements y. The CS measurements, y, can be represented
as y = Φw, where w represents the transform coefficients
associated with a basis, Ψ, in which the signal of interest is
(or assumed to be) sparse, x = Ψw, and Φ ∈ <M×N is a
random projection matrix with M < N [1], [2]. Finding w
(and hence x) represents an ill-posed problem, however, if
we exploit the fact that w is sparse with respect to a known
orthonormal basis (for example in wavelet basis), then we
can find an approximation with high accuracy.

A typical approach to solve the above linear inverse
problem, by taking into account the sparsity of w, is the
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`1-regularized formulation [2], [3]

ŵ = argmin
w
{‖y −Φw‖22 + ρ‖w‖1} (1)

The above CS formulation can be considered as the appli-
cation of a deterministic regularization approach to signal
reconstruction. However, the problem can also be formulated
using the Bayesian framework [4], [5], which provides
certain distinct advantages over other formulations such
as probabilistic predictions, automatic estimation of model
parameters, and estimation of the reconstruction uncertainty
[4], [6].

Recently, group-sparse models have been proposed for
CS [7]–[10] where the sparsity is assumed wth respect to
groups of coefficients. By taking into account the grouping
structure of the signal, results into superior reconstruction
performance [7]. Guided from these works, we proposed a
new model-based CS reconstruction algorithm. The novelty
of our work relays on a new parameterized group-sparse
prior and the development of a novel BCS inversion algo-
rithm. Experimental results have shown that the proposed
BCS inversion algorithm provides superior reconstruction
performance compared to other similar state-of-the-art re-
construction algorithms.

Next sections are organized as follows. First, we present
the proposed algorithm for CS reconstruction. In this section,
the Bayesian Linear Model is introduced for Bayesian CS re-
construction. More specifically, we describe the group-sparse
prior, the corresponding likelihood of the data, and then, the
inference procedure by using the Variational Bayesian (VB)
framework. After that, we present the experiments based on
synthetic 1D signals and 2D real data (i.e.images). Also, we
provide a comparison with well known CS reconstructions
algorithms. Finally, we conclude this work by a short dis-
cussion and future extensions of our work.

II. PROPOSED METHOD

The basic model for Bayesian Compressive Sensing, ac-
cording to [4], is described by:

y = Φw + e, (2)

where the matrix Φ ∈ <M×N is the random projection
matrix and e ∈ <M denotes the noise of the model, which
follows a gaussian distribution with zero mean and precision
(inverse variance) β. Finally, w ∈ <N is a vector containing
the coefficients.
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A. Group - Sparse Priors

In our analysis, we assume that the coefficients w have
a group structure. More specifically, we define G groups of
coefficients such that the vector wg contains dg coefficients
assigned to group g. Sparsity between groups can be achieved
by selecting carefully the prior distribution over them. As-
suming a priori independence between groups, and, that each
group follows a Gaussian distribution with zero mean and
covariance matrix a−1

g Idg , the prior over coefficients is given
by:

p(w|a) = N (w|0N ,C0) =
G∏
g=1

N (wg|0dg , a−1
g Idg ), (3)

where N is the symbol for Gaussian distribution. Further-
more, we assume that each parameter ag , which controls the
group sparsity of the parameters w, follows a Gamma distri-
bution, so the overall prior over all ag is a product of Gamma
distributions given by: p(a) =

∏G
g=1Gamma(ag; ba, ca).

The above hierarchical prior is well known for its sparse
properties [11], [12]. In our study we change the above prior
by introducing one more parameter. More specifically, we
assume that the covariance matrix C0 is a diagonal matrix
with elements a−1

g λ−1
g . In our analysis, parameters λg are

assumed known and deterministic quantities. Now the prior
distribution of coefficients is given by:

p(w|a;λ) = N (w|0N ,C0) =
∏G
g=1N (wg|0, a−1

g λ−1
g Idg ), (4)

This prior has been used to extract features in a classification
problem when no group structure is assumed (G = 1) [13].
Finally, the overall precision (inverse variance) β of the noise
follows a Gamma distribution: p(β) = Gamma(β; b, c) =

1
Γ(c)

β(c−1)

bc exp
{
− β

b

}
, where b and c is the scale and the

shape of the Gamma distribution, respectively. We use the
Gamma distribution for two reasons: First, this distribution
is conjugate to the Gaussian distribution, which helps us in
the derivation of closed form solutions, and second it places
the positivity restriction on the overall variance and scaling
parameters.

B. VB Inference

The overall prior over model parameters {w,a, β} is given
by: p(w,a, β;λ) =

∏G
g=1 p(wg|ag;λg)

∏G
g=1 p(ag)p(β).

The likelihood of the data is given by:

p(y|w, β;λ) = β
N
2

(2π)
N
2
exp

{
− β

2 (y −Φw)T (y −Φw)
}

(5)

At this point it is worth to note that two general bayesian
approaches could be used to estimated the interested quanti-
ties: the Bayesian Evidence Framework and the VB Method-
ology [14]. While the two approaches have significant sim-
ilarities, there also have a significant difference. Bayesian
Evidence, since it is based on the classical EM algorithm,
computes point estimates of posterior distribution. From the
other side, the VB computes estimates of the actual posterior
distribution. In our study we adopt the VB methodology.
To apply the VB methodology [14] we need to define an

approximate posterior based on one factorization over the
parameters {w,a, β}. In our study we choose the following
factorization: q(w,a, β;λ) = q(w;λ)

∏G
g=1 q(ag)q(β) [14].

Notice that this factorization makes the groups dependent a
posteriori. Applying the VB methodology, and taking into
account the above factorization, the following posteriors are
obtained:

q(w) = N (〈w〉,Cw), (6)
q(β) = Gamma(β; b′, c′), (7)

q(a) =
G∏
g=1

Gamma(ag; b
′

ag , c
′

ag ), (8)

The moments of each distribution are calculated by ap-
plying iteratively the following equations until convergence
[13], [14]:

Cw = (〈β〉ΦTΦ + 〈C0〉)−1, (9)

= 〈C0〉−1 − 〈C0〉−1ΦT
(
〈β〉−1I +

Φ〈C0〉−1ΦT
)−1

Φ〈C0〉−1

〈w〉 = Cw〈β〉ΦTy, (10)

1

b′ag
=

λg
2
(〈wg〉T 〈wg〉+ Tr{Cg}) +

1

ba
, (11)

c
′

ag =
dg
2

+ ca, (12)

〈ag〉 = b
′

agc
′

ag , (13)

1

b
′
β

=
1

2
‖y −Φ〈w〉‖22 + Tr(ΦTΦCw) +

1

b
, (14)

c
′

β =
N

2
+ c, (15)

〈β〉 = b
′

βc
′

β , (16)

In the above equations the matrix 〈C0〉 is a diagonal matrix
with 〈ag〉·λg in its main diagonal, where each element 〈ag〉·
λg is repeated dg times. Each parameter λg is set to 1

‖〈wg〉‖1
at the end of each iteration. Also, Cg denotes the submatrix
of Cw corresponding to the g-th group.

III. EXPERIMENTAL RESULTS

In this section we present experimental results demon-
strating the performance of the proposed CS reconstruction
algorithm. Our experiments are divided into two parts. In the
first part, we perform experiments using 1D synthetic signals,
where we can control the group-sparsity and various other
experimental settings such as group size, etc. In the second
part, 2D images are used to demonstrate the performance of
the proposed method in a more practical setting.

We compare our algorithm with five well - known CS
reconstruction algorithms: the Basis Pursuit (BP) [15], the
model-based CoSaMP recovery (mCoSaMP) [7], the modi-
fied Bayesian Compressive Sensing (BCS) [4] based on VB
(mBCS-VB), the group-sparse modeling using the McKay
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distribution (BCS-McKay) [9] and the wavelet based tree-
structured reconstruction algorithm (TS-BCS-VB) [8]. For
the BP implementation, we use the solver SolveBP from
the SparseLab toolbox1; for the mCoSaMP algorithm we
use the package modelcs v1.12; for the BCS-McKay algo-
rithm we use the package VBGS v023; for the TS-BCS-
VB algorithm we use the package tsbcs vb4. Finally, in our
implementation for mBCS-VB, we have extended the BCS-
VB algorithm [4] in order to include the case of group
sparsity under the bayesian framework. As a measure of
performance comparison between the methods, we use the
reconstruction error between the true signal and the estimated
signal. In the case of synthetic signals the reconstruction
error is given by ‖west −wtrue‖22/‖wtrue‖22, where wtrue

is the true coefficients and west is the estimated coefficients.
In the case of images the reconstruction error is given by
‖fest − ftrue‖22/‖ftrue‖22, where ftrue is the true image and
fest is the estimated image. Finally. each sample point in the
curves, shown below, is generated by performing 100 trials
of the corresponding algorithm and averaging the results.

A. Synthetic Signals

To compare the estimation performance of different re-
construction algorithms, we generated a collection of signals
with length N = 300. For the construction of coefficients we
use sparse signals with 60 coefficients Gaussian-distributed
with variance 1, and set the remaining coefficients to zero.
Also, we fix the group size to 20 (dg = 20, G = 15). The
M ×N Φ matrix is generated by drawing its entries from a
standard Gaussian distribution and normalizing the columns
to have unit -norm. Finally, with respect to the CS measure-
ments y we examine two cases, noise-free measurements and
noisy measurements. In the noisy case, we have added noise
from a Gaussian distribution with zero mean and standard
deviation 0.001. In this series of experiments we exclude
the TS-BCS-VB, since this algorithm is specifically design
to work by taking into account the grouping structure of
wavelet transform that, at this point, is not suitable for our
analysis.

Fig. 1 indicates the reconstruction error as a function
of the number of measurements. When we have noiseless
measurements, the proposed algorithm outperforms all al-
gorithms in terms of reconstruction error. Furthermore, our
algorithm needs less measurements to reach his optimal
reconstruction error. In the case of noisy measurements we
can see that all algorithm achieves similar reconstruction
error having adequate number of measurements (M/N>0.4).
However, the proposed algorithm achieves this performance
by using less measurements. Clearly, the above results
demonstrate the ability of the proposed algorithm to provide
accurate reconstruction. Furthermore, we can observe that
the proposed algorithm needs less measurements to achieve
the same level of reconstruction, compared to the others

1https://sparselab.stanford.edu/
2http://dsp.rice.edu/software/
3http://dbabacan.info/software.html
4http://people.ee.duke.edu/ lcarin/BCS.html

0.1 0.2 0.3 0.4 0.5 0.6 0.7

M/N

10
-8

10
-6

10
-4

10
-2

10
0

10
2

R
e

c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r

BCS-McKay

mBCS-VB

Proposed

BP

mCoSaMP

(a) Noiseless case

0.1 0.2 0.3 0.4 0.5 0.6 0.7

M/N

10
-3

10
-2

10
-1

10
0

10
1

R
e

c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r

BCS-McKay

mBCS-VB

Proposed

BP

mCoSaMP

(b) Noisy case
Fig. 1. Comparison of the reported methods using (a) noiseless CS
measurements and (b) noisy CS measurements - {dg = 20, G = 15}

methods. Experimental results with respect to the group size
({dg = 10, G = 30},{dg = 5, G = 60}) results in similar
conclusions, see Figs. (2) and (3), respectively.

B. Images

In this section, we present a comparison between the
proposed method and a number of existing methods on
three image-guided example problems. All examples con-
sidered below are for 64 × 64 images. Our objective is
to estimate N(= 4096) scaling and wavelet coefficients.
The M × N Φ matrix is constructed in a similar way
reported in the previous section. For each algorithm we
produce a curve of reconstruction error as a function of
the number of CS measurements. We examine three cases
which include images with different properties. The images
are shown in Fig. 4. In all cases, the grouping structure has
been constructed by adopting the tree-like structure reported
in [8]. More specifically, wavelet coefficients having the
same parent create a group. Also, if a coefficient does not
have a parent then it creates its own group. In this series
of experiments we exclude the mCoSaMP algorithm (this
algorithm works strictly for block sparse signals knowing a
priori the number of active blocks) and include the TS-BCS-
VB algorithm which is designed specifically for this kind of
problems.

Fig. 5 shows the reconstruction results for the three
images. In all cases, the decomposition level of wavelet
transform was set to 6. Furthermore, for the analysis of the
Mondrian image, we used the ”symmelet8” wavelet, for the
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(b) Noisy case
Fig. 2. Comparison of the reported methods using (a) noiseless CS
measurements and (b) noisy CS measurements - {dg = 10, G = 30}
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(b) Noisy case
Fig. 3. Comparison of the reported methods using (a) noiseless CS
measurements and (b) noisy CS measurements - {dg = 5, G = 60}

MRI image, we used the Haar wavelet and for the Peppers
image, we used the ‘db4’ wavelet. We can see that the
proposed method clearly outperforms all methods in all cases
besides the TS-BCS-VB. By comparing the proposed method
with the TS-BCS-VB we can see that when we have very
small number of measurements (M/N=0.1) the TS-BCS-
VB provides slightly better reconstruction ability, however,
as the number of measurements is increased (M/N>0.1),
the situation is reversed, and the proposed method provides
better performance. It is worth to point out that in the
case of Peppers image, when we have adequate number of
measurements (M/N≥0.4), the BCS-McKay and mBCS-VB
have better performance than the TS-BCS-VB and similar
performance to our algorithm. Form the above results it
is evident that the proposed algorithm provides more sta-
ble behaviour compared to other reconstruction algorithms
since, having sufficient number of measurements (M/N>0.1),
presents better performance in a number of images with
different properties ranging from medical images to paintings
to natural images. Finally, in Fig. 6, we provide comparisons
on the average computational time of each method. As a test
image in this case we have used the Peppers image. We
can see that the proposed method need less time than BCS-
McKay, and similar to mBCS-VB. The method that is the
most quickly is TS-BCS-VB.

IV. CONCLUSIONS

In this work, we proposed a new algorithm for CS
reconstruction when an underlying group-sparsity structure
exists on the signal of interest. Also, a comparison of our
algorithm with well - known reconstruction algorithms is
provided. Experimental results using synthetic 1D signals
and 2D real data (i.e.images) have shown the usefulness
of our algorithm. More specifically, in the case of 1D
synthetic signals, where the various experimental settings can
be controlled efficiently, the proposed algorithm has shown
superior reconstruction ability. Furthermore, our algorithm
needs less measurements to achieve his optimal perfor-
mance. Additional experiments with images, have shown
that the proposed algorithm provides superior performance
than the mBCS-VB and BCS-McKay, and, slightly better
performance than the TS-BCS-VB. Future extensions of our
algorithm could include overlapping grouping structure as
well as multi-CS schemes, such as those in [16], [17], and
CS schemes based on multichannel recordings [18]. Also,
approximation schemes of our algorithm could be devised in
order to apply it into higher dimensional problems.
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