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Abstract—Voice user interfaces have increased in popularity, as
they enable natural interaction with different applications using
one’s voice. To improve their usability and audio quality, several
devices could interact to provide a unified voice user interface.
However, with devices cooperating and sharing voice-related
information, user privacy may be at risk. Therefore, access
management rules that preserve user privacy are important.
State-of-the-art methods for acoustic pairing of devices provide
fingerprinting based on the time-frequency representation of the
acoustic signal and error-correction. We propose to use such
acoustic fingerprinting to authorise devices which are acoustically
close. We aim to obtain fingerprints of ambient audio adapted to
the requirements of voice user interfaces. Our experiments show
that the responsiveness and robustness is improved by combining
overlapping windows and decorrelating transforms.

Index Terms—Voice User Interface, Acoustic Pairing, Audio
Fingerprint, DCT

I. INTRODUCTION

Voice User Interfaces (VUI) enable intuitive interaction with
devices, similar to interaction between people. As VUI tech-
nology has rapidly improved, VUIs have gained in popularity.
Applications include, for example, voice assistants [1]–[3],
where people talk and interact to an artificial intelligence (AI),
and telecommunications applications such as Skype, which
allow voice communication. However, these applications bind
the user to the device that provides this VUI. In the developed
world, the majority of the population owns multiple devices
containing microphones, e.g., smart phones, tablets or laptops.
If all these collaborated in a distributed network sharing the
recorded information, free mobility would be possible without
carrying a recording device. Voice could be recorded by the
device that received the cleanest signal or, if multiple devices
heard the same speech, multichannel coding could achieve a
more efficient extraction of the speech signal [4], [5].

Multi-device VUIs, however, give rise to privacy concerns.
Specifically, if all devices are continuously recording and
transmitting the voice of the user, one has to consider the
effect that it may have on the privacy of the user. The voice
does not only contain features that reveal personal information,
like emotion or health condition [6], but people are also less
careful in information disclosure via voice [7]. Therefore, the
devices of a distributed VUI need robust and intuitive privacy
management.
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Fig. 1. Scene representing the acoustic space and how the pairing algorithm
should ideally work.

Figure 1 illustrates the intended functionality of the pro-
posed device pairing. An acoustic space can be defined as the
area where a person’s voice is audible and comprehensible.
This acoustic space depends on the distance between the de-
vices, but it is also strongly affected by the acoustic conditions
of the room. For example, closing the door of a room implies
the creation of an acoustic barrier that will set a boundary
for the acoustic space. The same applies to a noisy cafeteria,
where a high noise level masks the speech signal and reduces
the reach of the acoustic space.

This paper proposes an intuitive access management sys-
tem for acoustic information. Access is awarded to devices
residing in the same acoustic space. Therefore, we present
pairing methods based on acoustic fingerprints. Successfully
paired devices are then granted permission to collaborate. To
improve on the state-of-the-art in Section II, we propose a
method based on overlapping windows and decorrelation of
the frequency bands in every time frame, presented in Sec-
tion III. The performance of the proposed method is evaluated
and compared to state-of-the-art methods in Section IV, by
measuring robustness against noise and signal delay, as well
as through statistical analysis of the generated fingerprints to
evaluate their cryptographic strength.

II. ACOUSTIC PAIRING

Device pairing from acoustic features can be classified into
two categories: Active and passive methods. In active methods,
one device will generate a known signal, which is analysed by
other devices to determine if pairing is feasible [8]. However,
active methods require that the devices play an acoustic signal
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Fig. 2. Similarity of fingerprints between distinct microphones with varying
delay using the original method with (1) 300 ms non-overlapping windows,
(2) 200 ms overlapping windows, (3) reduced number of windows and (4)
100 ms non-overlapping windows.

every time a new device needs authentication, which is not
viable in an intuitive voice user interface. Alternatively, passive
methods take advantage of external sounds to evaluate if
two devices are located close to each other. Passive meth-
ods usually generate a fingerprint which contains different
properties of the recorded audio that can be compared to
evaluate their similarity [9]–[11]. Passive methods depend on
the environment sounds and not on a controlled signal as active
methods, therefore, their robustness is lower. However, they
adapt better to the requirements of intuitive authentication in
a distributed VUI.

A passive method can obtain a fingerprint that can be used
to calculate a cryptographic key [12]. This key will be used
to authenticate the devices in the acoustic sensor network.
To calculate the fingerprint, 6.375 s of audio are recorded
and divided into 17 non-overlapping windows with a duration
of 375 ms. The DFT of every time frame is calculated and
the frequency bands are grouped into 33 energy bands. The
fingerprint is then calculated as the sign of the difference
between consecutive bands in time and frequency [10].

Real-life environments however feature background and
sensor noises, whereby we have to use error-correction meth-
ods to avoid bit-errors [12]. Therefore, if two fingerprints
are sufficiently similar, a shared secret is generated and the
devices will be able to share information without disclosing
their fingerprint.

The main issue with the above method is that the length
of the recording is required to be at least 6 s. A whole
conversation can take place in 6 s, therefore, if the fingerprint
calculation takes longer than that, the whole conversation
would be lost. A faster response is necessary to establish the
initial pairing and to stop sharing information if a device in
the distributed VUI leaves the acoustic space.

Trivial approaches to reducing the length of the recordings
would be to use a smaller number of windows or reduce their
length. Figure 2 shows the effect of these modifications on the
original fingerprint [12] to reduce the length of the recordings
to 2.2 s. The performance of the fingerprints is represented
as a similarity value between two fingerprints from different
recording devices. The similarity is calculated as the ratio of
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Fig. 3. Block diagram of the proposed fingerprint calculation.

matching bits between the compared fingerprints.
Delay between the recorded signals is the main source of

degradation in the fingerprint matching. Therefore, shorter
windows (100 ms) reduce the quality of the fingerprint. Al-
ternatively, by reducing the number of windows from 17 to 6,
fingerprint quality is mostly retained but its length degrades
from 512 to 160 bits, which impairs cryptographic strength.

III. PROPOSED METHOD

The objective of the proposed method is robust authenti-
cation of devices with low delay, such that it is suitable for
VUI applications. As a consequence, we use passive acoustic
pairing of devices that avoids long recordings. The novelty is
a fingerprint from reduced-length recordings which improves
the robustness to noise compared to previous algorithms [12].

Consider two microphone signals, x1 and x2, which are
synchronised to within 10 ms, with different sensor noises,
and distorted by slightly different room impulse responses.
We aim to obtain a fingerprint f(x) such that |f(x1)−f(x2)|
is minimised when the signals are considered to match and
maximised otherwise. Error-correcting codes can then rectify
the remaining differences and similar fingerprints will match
despite bit errors [12].

To design such a fingerprinting function f(x), we use
a modification of the previously proposed time-frequency
transform as presented in Figure 3. We reduce the recording
length to 2.2s using 17 overlapping windows with a duration of
200 ms and an overlap of one third of a window. The windows
are transformed to the frequency domain using the discrete
Fourier transform. To keep the number of coefficients equal
to [12], we calculate the energy of 32 uniformly distributed
energy bands in the spectrum of each frame. Decorrelation of
the frequency components is then proposed to compensate the
degradation produced by the shorter overlapping windows.

A further benefit of this approach is that it makes the
systems structure more similar to speech coding methods also
present in the device [13], [14]. The energy band grouping
resembles an estimation of the spectral envelope, which is
a common operation in speech codecs. If the length of the
windows could be reduced to a similar length as the device’s
codec, we could use the codec’s spectral envelope to to obtain
the fingerprint. The benefit is that by sharing modules across
different tasks, we could reduce the overall computational
complexity and resource consumption.

A discrete cosine transform (DCT) is then applied over
the frequency axis in every frame as a decorrelation function.
The decorrelating properties of the DCT are widely used in
speech coding [14], [15] and in this case, the decorrelation of
the energy bands increases the robustness of the fingerprint
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Fig. 4. Similarity values for special non-matching scenarios. (Left) Matching
speech with different noises. (Right) Matching noise and different speech
signals

and improves its accuracy. The decorrelation function also
benefits the fingerprint from a cryptographic viewpoint. The
fingerprint should resemble a random sequence, for which its
serial correlation has to be minimised.

Finally, we define the bits of the fingerprint as the sign of the
difference between a DCT component and the corresponding
one in the next time slot. The outcome is a sequence of 512
bits, in accordance with the fingerprint in [12], which allows
an easy comparison of methods.

IV. PERFORMANCE EVALUATION

To quantify the performance of the proposed method in
comparison to state-of-the-art, we measured the similarity
between two fingerprints from different devices in matching
and non-matching scenarios. First, we evaluate the robustness
of the fingerprint with respect to noise. Second, we investigate
how delay between signals reduces the performance. Finally,
we analyse the statistical properties of the generated finger-
prints to evaluate their cryptographic strength.

A. Noisy Speech Database and SNR Analysis

Our first experiment evaluates the fingerprints at different
SNR values using a noisy speech database. We used the
TIMIT speech corpus [16] with additive noise from the QUT
noise database [17]. Specifically, first we randomly selected
100 speech files and 20 types of noise. Second, noises were
added at different SNR levels from −10 to 20 dB with 3 dB
increments. Every speech-noise pair is used to generate 3 files
with random delays around ±15 ms between audio files to
simulate the different positions of the recording devices. The
resulting database contained 60000 noisy speech files with a
duration of 10 s each.

A speech signal affected by a single additive noise source
is a simplification of sound propagation as signals are altered
by the impulse response of the room and the noise comes
from multiple directions depending on the position of its
sources. This is useful to control the SNR level and analyse the
influence of speech and non-speech signals in the calculation
of the fingerprints. However, the expected performance in this
section will be higher than a real situation and it can not be
considered a realistic measurement.

The original fingerprint was implemented with 300 ms non-
overlapping windows [12]. For the proposed method, 200 ms
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Fig. 5. Similarity of fingerprints between distinct microphones with varying
delay in an office environment. Original, proposed with 200 ms and 50 ms
overlapping windows, as well as comparison to microphones that do not match
for original and proposed.

TABLE I
AVERAGE SIMILARITY VALUES OVER 100 MATCHING FINGERPRINT PAIRS

USING 200 MS WINDOWS IN DIFFERENT SCENARIOS.

Scenario Office Conference Room Street
Original 62.3 % 66.0 % 57.7 %
Proposed 71.5 % 77.3 % 68.2 %

windows with an overlap of one third of a window are
used. To obtain a fingerprint with the same length using both
methods, the analysed frame is divided into 17 windows. The
recordings are 6.375 and 2.2 s respectively. To determine the
impact of the windowing function, multiple windows used in
speech coding were tested, e.g., Hamming, Hann or half-sine.
Informal experiments did not show any noticeable difference
over the multiple windows, therefore, the window can be
chosen according to the requirements of the final application.

Every file was compared to all the other files with the same
SNR and classified depending on whether the speech and noise
match. When both speech and noise signals match, the number
of identical bits remains almost constant around 95 % over all
the SNR values in both methods. The result is also independent
to the SNR when both speech and noise do not match, showing
a reduction in the similarity of the fingerprints.

Figure 4 shows the results when the speech signals match
but the background noise is different and vice-versa. When
both signals contain the same speech, we observe that the
proposed method provides higher accuracy at high SNR levels.
When the speech signal differs but the background noise is the
same, fingerprint similarity reached with the proposed method
is lower than the original method. This represents the effect
of the acoustic space in places with a high level of noise.
Consequently, in the proposed method, signals resembling
speech have a higher impact on the calculated fingerprint than
in the original method.

B. Real-scenario Recordings and Synchronisation Effect

To evaluate how the proposed method would behave in a
real VUI, we collected informal recordings of conversations
in multiple realistic scenarios. The chosen locations were a
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Fig. 6. Distribution of p-values for keys after 20 runs of the DieHarder set of tests. (1) birthdays (2) operm5 (3) rank32x32 (4) rank6x8 (5) bitstream (6)
opso (7) oqso (8) dna (9) count-1s-str (10) count-1s-byt (11) parking (12) 2D circle (13) 3D sphere (14) squeeze (15) runs (16) craps (17) marsaglia (18) sts
monobit (19) sts runs (20) sts serial [1-16] (21) rgb bitdistr. [1-12] (22) rgb min dist. [2-5] (23) rgb perm. [2-5] (24) rgb lagged sum [0-32] (25) rgb kstest
(26) dab bytedistr. (27) dab dct (28) dab filltree (29) dab filltree 2 (30) dab monobit 2.

TABLE II
ENT PSEUDORANDOM NUMBER SEQUENCE TEST PROGRAM RESULTS

FOR FINGERPRINTS GENERATED FROM AUDIO SEQUENCES (430080 BITS).

Parameter Results Optimum Worst case
Entropy 0.9956 1 0
Optimum Compression 0 % 0 % 100 %
Arithmetic mean 0.5389 0.5 0 or 1
Serial correlation 0.0815 0 1

small private office, a conference room with a long table in
the middle and the street. Three mobile phones (OnePlus 5T,
HTC10, HUAWEI Honor 5X) were used to record different
conversations between three people. In the first two scenarios,
two of the phones were placed on the table at a distance of 1
to 2 meters from each other, and the third one was in one of
the user’s pockets. The third scenario was staged on the street
and the users held the recoding devices in their hands.

Table I shows the similarity between matching synchronised
fingerprint pairs in the different scenarios described above.
These were calculated averaging the similarity of 100 match-
ing fingerprint pairs in every scenario. The proposed method
provides a similarity 10 % higher in all the evaluated scenarios,
which would increase the robustness of the authentication.

Informal experiments show that the main source of distor-
tion in the fingerprint matching is the delay between the sig-
nals, specifically delays caused by acoustic distance and trans-
mission delays. The fingerprints should match even with syn-
chronisation errors, such that f(x1(k)) ≈ f(x2(k − ∆sync)).
The effect of delays is attenuated in [12] by using long non-
overlapping windows. The degradation due to delay in over-
lapping windows is noticeable in Figure 2. The decorrelation
should also compensate the degradation for short delays.

To evaluate the effect of discrepancies in synchronization,
we measured how such delays degrade fingerprint similarity.
Figure 5 depicts the performance of the two methods in an
office scenario under delays in the range of −60 to 60 ms.
Shorter windows have a negative effect on the robustness to
delays, however, when delays are under 60 ms, the perfor-
mance of the proposed method is still higher than the original.
Note that in non-matching scenarios, both methods present
a similarity between fingerprints around 50 %, which is the
expected value of comparing two random binary sequences.

C. Entropy and Statistical Analysis

We also need to evaluate the performance of the fingerprints
from a cryptographic perspective, which can be measured
using their statistical properties. Our objective is to generate
fingerprints that resemble a random sequence of bits. To
analyse the statistical properties of the generated fingerprints
and their entropy, multiple fingerprints were calculated using
the recordings from three mobile devices in multiple scenarios
as it is described in Section IV-B. In total, 3780 fingerprints
were used.

The DieHarder statistical tests [18] were used to evaluate
whether the proposed scheme is robust against bias in the
generated random sequences. Figure 6 depicts the p-values
computed from 20 runs of the DieHarder tests. While these
tests can not replace cryptanalysis they are designed to uncover
bias and dependency in the pseudo random sequence.

Every test has an expected distribution of outcomes; test
runs produce a value that is compared to the theoretical
outcome. A p-value between 0 and 1 is then computed,
describing the probability that a real random number generator
(RNG) would produce this outcome. A good RNG will have
a range of p-values that follows a uniform distribution. A p-
value below a fixed significance level α = 0.001 indicates a
failure of the RNG with probability 1 − α. 100 p-values are
computed in a single run of DieHarder and their distribution
is compared to a uniform one.

As depicted in Figure 6, the p-values are well distributed
and centred around the mean at roughly 0.5. While few tests
deviate slightly, and few tests were weaker than the majority,
not a single test failed in the 20 × 100 repetitions of all
tests. Therefore, no statistical bias was found for the random
sequences generated by the proposed method.

Additionally, the results of an Ent Pseudorandom Number
Sequence Test [19] are summarised in Table II. In this test, the
information density of bit sequences is computed together with
reduction capabilities through optimal compression, arithmetic
mean of data bytes as well as the serial correlation coefficient.
We observe that the results obtained from the calculated
fingerprints barely deviate from the optimum values.
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V. CONCLUSION

This paper presents a method for authentication of devices
in voice user interfaces based on an acoustic fingerprint. In
comparison to previous methods [8], [9], [12], the proposed
method provides a higher accuracy in determining fingerprints
and a lower latency in the authentication process, thus increas-
ing its responsiveness.

We propose shorter, overlapping windows, such that a
shorter segment of audio is used to calculate the acoustic
fingerprint. This, simultaneously, makes the calculation more
similar to typical speech processing [13], [14]. This may prove
useful in future applications where parts of the processing
could be shared between different speech processing meth-
ods [4], [5]. The decorrelation of the energy bands provides
a higher accuracy in the fingerprint matching, compensating
the degradation produced by the shorter windows. The shorter
speech segment also contributes to sharing a lower amount of
information, consequently protecting the users’ privacy.

In conclusion, the presented method shows that a combi-
nation of overlapping windows and decorrelating functions
can be used to generate an acoustic fingerprint using shorter
audio segments while maintaining the performance of state-
of-the-art. This method provides a robust and responsive
authentication for devices in a distributed voice user interface
that adapts to the properties of the acoustic space in a variety
of scenarios.
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