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Abstract—Source localization for near-field narrowband signal
is an important topic in array signal processing. Deep neural
network (DNN) based methods are data-driven and free of
pre-assumptions about data model and are expected to learn
the intricate nonlinear structure in large data sets. This paper
proposes a framework of DNN where a regression layer is
utilized to address the problem of near-field source localization.
Unlike previous studies in which DOA estimation is modeled as
a classification problem and have a relatively low resolution, we
exploit a regression model and aim to improve the estimation
accuracy. In the training stage, we propose a novel form of
feature representation to take full advantage of the convolution
networks. In addition, the architecture of deep neural networks
is well designed taking in to consideration the trade-off between
the expression ability and under-training risks. The simulation
results show that the proposed approach has a rather high
validation accuracy with a high resolution, and also outperforms
some conventional methods in adverse environments such as low
signal to noise ratio (SNR) or small number of snapshots.

Index Terms—Source localization, deep neural network (DNN),
near-field signal, regression model

I. INTRODUCTION

Source localization is a widely studied problem in various
areas such as radar, sonar, speech recognition and wireless
communications (e.g., [1]–[5], [20]). Many high-resolution
methods like MUSIC [2] and ESPRIT [3] have been proposed
to estimate the direction-of-arrival (DOA) of far-field signals.
When a signal source is localized in the Fresnel region of the
array aperture, the wave impinging on the array has a spherical
wavefront and thus must be characterized by both DOA
and range. As a result, most aforementioned high-resolution
methods with the far-field assumption are not applicable for
near-field source localization problems. Many methods were
then developed using second-order Taylor expansion to ap-
proximate the spherical wavefront [4]. Other popular methods
include high-order statistics (HOS), maximum likelihood esti-
mation (MLE) methods [5] and the generalized ESPRIT based
method [20]. In fact, those parametric methods mentioned
above not only include strict limitations on signal/noise mod-
els, they also rely heavily on the consistency of the forward
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mappings from signal direction to array outputs. Consequently,
the performance of these methods may suffer from various
imperfections in practical systems.

In comparison, data-driven deep learning techniques have
the advantage of reconstructing complicated propagation mod-
els via training processes. They generally involve an extraction
procedure of features, one of the main reasons for the success
of deep learning, such as generalized cross correlation (GCC)
vectors [10] or the phase component of the short-time Fourier
transform (STFT) of the received microphone signals [11].
While it has succeeded in very demanding scenarios such
as dynamic acoustic and broadband signals [10]–[12], [15],
synthesized noise signals [8], [11] and reverberant multi-room
environments [10], [14], it can hardly be employed directly in
general source localization because of limited information on
the features [16]. In terms of the selection of the training neural
networks, the majority of the deep learning methods choose
classification models rather than regression ones [10]–[15],
which can be seen as a compromise on the estimation accuracy.
However, the regression model provides a more reasonable
explanation. More recently, Chakrabarty et al. [8] proposed a
framework that yields the best localization performance with
M − 1 convolution layers, given an array of M microphone.
While it provides insight into the modification of a network
parameter due to the change in the number of microphones,
it could lead to a high computational cost as the number
of the microphones increase. Furthermore, most of the deep
learning methods deal with DOA estimation exclusively with
a resolution of 5◦ [8], [13] or even 10◦ [12], [15], which is
too low a resolution to be put into practice in most general
near-field source localization applications.

In this paper, we propose a deep neural network with a
regression model to address the issue of near-field source
localization. Different from previous methods which mainly
focus on DOA estimation in far-field scenarios or acoustic
signals in a reverberant environment, we concentrate on lo-
calization of general DOA and range parameters for near-field
source. Rather than inputting the feature into the networks
in the form of a vector, we reshape the feature information
into a matrix to better utilize the structural advantages of the
networks. Additionally, we design a regression layer to provide
more reasonable explanations with a relatively high resolution.
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II. DATA MODEL

Consider K near-field noncoherent signals {sk(n)} imping-
ing on a uniform linear array (ULA) consisting of M sensors
with spacing d. The received noisy signal xm(n) at the m-th
sensor can be expressed as

xm(n) =
K∑
k=1

sk(n)e
jτm,k + wm(n) (1)

where m = 1, · · · ,M , wm(n) is the additive noise, and τmk
is the phase delay due to the time delay between the reference
sensor and the m-th sensor for the k-th signal, which is given
by [7]

τm,k =
2π

λ

(√
r2k + (md)2 − 2rkmd sin θk − rk

)
(2)

where θk and rk are the DOA and range of the kth signal, and
λ is the wavelength. When the k-th signal is in the Fresnel
region (i.e., rk ∈ (0.62(D3/λ)1/2, 2D2/λ), where D is the
array aperture [9], we can rewrite (1) as

x(n) = [x1(n), x2(n), · · · , xM (n)]T (3)

=
K∑
k=1

a(θk, rk)sk(n) +w(n) (4)

= As(n) +w(n) (5)

where ( · )T denotes transpose, s(n) and w(n) are the vectors
of incident signals and additive noises given by

s(n) = [s1(n), s2(n), · · · , sK(n)]T (6)

w(n) = [w1(n), w2(n), · · · , wM (n)]T . (7)

while A is the steering matrix of the calibrated ULA defined
by A , [a(θ1, r1),a(θ2, r2), · · · ,a(θK , rK)], and a(θk, rk)
is the array steering vectors which can be expressed as

a(θk, rk) = [ejτ1,k , ejτ2,k , · · · , ejτM,k ]T . (8)

In this paper, we assume that the incident signals {sk(n)}
are zero-mean stationary random processes, while the additive
noises {wm(n)} are uncorrelated with the incident signals and
are temporally and spatially complex white Gaussian random
processes with zero-mean and variance σ2.

III. METHOD

We are interested in generating a system that can localize
the near-field source using the deep neural network technique.
Most previous methods have formulated the estimation as an
N-class classification problem, where each class corresponds
to a possible value [10]–[15]. We nonetheless design a deep
neural network featuring a regression layer, for it not only
makes more sense in physical interpretation, but it also gener-
ates a higher estimation precision. The feature extraction that
precedes the network also has a sophisticated design that takes
full advantage of the convolution layer.

A. Feature Extraction

Feature extraction is essential to the learning process. Ef-
ficient and sufficient information is needed in the feature
representation for the source localization task. While most
methods reformulate the covariance matrix of the received
signal into a vector [22], we keep the covariance matrix in the
matrix form, since the convolution layer in the deep learning
network is initially designed to handle image data. In fact,
experiment shows that feature represented in a matrix form
generated slightly higher accuracy than vector form in the case
of using a regression model.

Under the basic assumption and data model, the covariance
matrix R of the array output is given by

R = E{x(n)x(n)H} = ARsA
H + σ2IM (9)

where Rs , E{s(n)s(n)H}. In general R can be approx-
imated by averaging over the time index n. Since R is a
Hermitian matrix, there are redundant information in the upper
and lower triangular parts of the matrix. And considering that
we need to decompose the complex value of each entry of
R, except the diagonal elements, into separate real values, we
thus propose a form of feature representation r, given by

r =


r1,1 <(r1,2) · · · <(r1,M )
=(r2,1) r2,2 · · · <(r2,M )

...
. . .

=(rM,1) =(rM,2) · · · rM,M

 (10)

where <(·) and =(·) denote the real and imaginary parts of
a complex value respectively. The dimension of the matrix r,
i.e., the size of the inputs remain the same as the covariance
matrix.

B. Deep Neural Network Framework
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Fig. 1. Deep learning neural network framework for near-field source
localization

The proposed DNN-based near-field source localization
framework is depicted in Fig. 1. With the feature-enhanced
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covariance matrix r as the input of the network, we mainly
employ 3 convolution layers to learn the local features of the
input data. In this paper, small filters of size 1× 2 are applied
to learn the correlations between the neighboring microphones
with “same” padding. This is in contrast to [11], [12], [15],
where square filters of size such as 2 × 2 or filters of larger
size such as 5 × 7 were used to learn the features. In fact, a
smaller filter size not only capture more detailed and complex
features in the input, it also benefits from weight sharing and
reduction in computational costs. The convolution layer is
followed by a batch normalization layer, which normalizes
the activations and gradients propagating through a network,
making network training an easier optimization problem [25].
Additionally, it is noted that using batch normalization layers
between convolution layers and non-linearities, such as ReLU,
can speed up network training and reduce the sensitivity
to network initialization. There are no max pooling layers
to perform down sampling, because it causes performance
degradation in our network. Furthermore, we use a dropout
layer with a probability of 0.2 to prevent from overfitting [23].
Finally, since we define the source localization as a regression
problem, a fully connected layer must precede the regression
layer at the end of the network.

The regression computes the half-mean-squared-error loss
of the training process, which is given by

loss =
1

2

N∑
i=1

(ti − yi)
2

N
(11)

where N is the number of responses, ti is the target output,
and yi is the network’s prediction for the response variable,
i.e., the DOA and range estimation of the network.

After defining the network structure, we selected the best
configuration of the parameters in the network based on
fine tuning. The network is trained using stochastic gradient
descent with momentum (SGDM) with an initial learning rate
of 0.001. To prevent the training from reaching a sub-optimal
result or diverging, we drop the learnin by multiplying it with
0.1 every 5 epochs. Additionally we set the maximum number
of epochs for training to 20, and the size of the mini-batch to
use for each training iteration is 128. We shuffle the training
data before each training epoch and the validation data before
each network validation.

IV. SIMULATIONS AND ANALYSES

A. Simulation Settings

The proposed method is evaluated on a 9-element uniform
linear array, with inter-element spacing of the ULA being a
quarter of the wavelength. Theoretically, multi-sources can
be trained simultaneously to output their DOA and range
estimations using our DNN framework, while for the sake
of simplicity, we take one source as an example. And the
location of the source is set as (r, θ) = (1.7λ, 12◦), which is
in the Fresnel region of the array aperture (0.62λ < r < 2λ),
according to the definition in Section II. To generate the
training data set, the source’s DOA impinges from the spatial

scope of [−60◦, 60◦) from the center of the array within the
range of 0.70λ to 1.90λ deliberately. For simulations on the
DOA of the source, the spatial spectrum is discreted at 1◦

intervals, thus there are I = 120 grids in total with θ1 = −60◦,
θ2 = −59◦, · · · , θI = 59◦. As for the simulations of the range
of the source, the plane wave is discreted at 0.01λ intervals
from the spatial scope of [0.70, 1.89). Similarly, there are
also P = 120 grids in total. 1000 examples are generated
to sample each DOA and range entry. Hence there are 120000
samples in total, and we set aside 12000 samples for network
validation. The training set and validation set for each number
of snapshots are of the same size as for SNR. The results are
compared with the GESPRIT method in [20] and the Cramer-
Rao Bound (CRB) in [21].

B. DOA and Range Estimation Performance
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Fig. 2. RMSEs of the (a) DOA and (b) range estimates versus SNR
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Fig. 3. RMSEs of the (a) DOA and (b) range estimates versus the number
of snapshots
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TABLE I
VALIDATION ACCURACY PERFORMANCE OF DOA AND RANGE VERSUS SNR

SNR -10 -5 0 5 10 15 20 25 30 35
DOA 0.1077 0.2928 0.5112 0.7822 0.9222 0.9702 0.9765 0.9825 0.9842 0.9800
Range 0.1390 0.2917 0.5037 0.7032 0.7787 0.8365 0.8670 0.8817 0.8865 0.9070

TABLE II
VALIDATION ACCURACY PERFORMANCE OF DOA AND RANGE VERSUS NUMBER OF SNAPSHOTS

Snapshots 101.0 101.2 101.4 101.6 101.8 102.0 102.2 102.4 102.6 102.8

DOA 0.3315 0.3932 0.4755 0.5642 0.6310 0.7098 0.7938 0.8560 0.8813 0.9407
Range 0.3037 0.3428 0.4273 0.4862 0.5610 0.6357 0.7112 0.7938 0.7820 0.9010

Fig. 2 illustrates the RMSEs performance of the DOA
and range estimation versus SNR, respectively. The number
of snapshots is set as 64, and SNR varies from -10dB to
20 dB. It can be seen that the RMSEs of both DOA and
range decrease with the increasing SNR. Additionally, it shows
that the proposed method outperforms GESPRIT method in
adverse conditions such as low SNR, which can be better
adapted to practical applications.

Similarly, Fig. 3 displays the RMSEs performance of the
DOA and range estimation versus the number of snapshots,
respectively. In this simulation, SNR is set as 4dB, and the
number of snapshots vary from 10 to 1000. It shows that the
RMSEs of DOA estimation and range estimation roughly ob-
serve a monotonic decreasing pattern with the increasing num-
ber of snapshots. Corresponding to the estimation performance
versus SNR, the proposed method generally performs better
than GESPRIT, especially when the number of snapshots is
relatively small. It is noted that most conventional methods
suffer from demanding tasks like estimation in environments
with low SNR or small number of snapshots, while the
proposed method shows potential capability of complementary
use of such DNNs with other techniques.
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Fig. 4. Box plot of degrees error for some DOA estimations

Further more, we want to explore the parameters estimation
performance in details, such as the distribution of degrees
error. A box plot is thus proposed like Fig. 4 for this purpose.
In this experiment, we take the DOA estimation as an example,
where the number of snapshots and SNR are set as 500 and
10dB, respectively. We select 12 directions as representatives
of the whole spatial scope. Through the quartiles information
depicted in the figure, we can see that the DOAs have a mean
close to zero and little variability outside the upper and lower
quartiles. Besides this, only a small number of outliers appear
as individual points, which demonstrates the robustness of the
proposed method.

Table. 1 and Table. 2 show the validation accuracy perfor-
mance of DOA and Range versus SNR and the number of
snapshots, where the simulation settings are the same as the
experiments above. Different from most classification model
based methods, which consider the DOA estimation is correct
as long as the deviation of the estimated direction is within
1◦, or even 10◦, we set our evaluation resolution to be 0.5◦

for DOA estimation and 0.05λ for range estimation. The
simulation results are rather satisfactory nonetheless. For DOA
estimation versus SNR, the validation accuracy approaches to
above 90 percent when SNR is above 10 dB. Besides, the
proposed method also gave reliable performance when the
number of snapshots was sufficiently large. In fact, if the
deviation is set as 1◦ for DOA estimation and/or 0.1λ for
range estimation, the validation accuracy will be much higher
than the results showed in the tables.

C. Impact of Convolution Layers

In addition to the evaluation about the parameters of inter-
ests, we also carried on experiments to investigate the impacts
of the convolution layers to the whole network, which could
provide insight into the improvements of the deep neural net-
works. The different networks are evaluated with the number
of snapshots equals to 64. We compared the DOA estimation
performance versus SNR with number of convolution layers
varying from 1 to 4, separately. According to Fig. 5, it can be
seen that the estimation performance improves ideally with the
number of convolution layers increasing from 1 to 3, which
is reasonable because a deeper network comes with stronger
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expression ability, theoretically [24]. However, it is noted that
the DNNs consisting of three convolution layers outperformed
those of four layers. This can be explained by the increasing
under-training risk caused by excessive parameters [25]. In
fact, too many convolution layers can also lead to overfitting
and the degeneration of the networks, not to mention the
increasing computing costs. As a result, we choose three
convolution layers as a trade-off between the expression power
and various risks.

V. CONCLUSION

This paper proposes a regression approach with a deep
neural network framework to deal with the problem of near-
field source localization, so as to make up for the previous
data driven methods in terms of deficiency of regression model
and low estimation resolution. The proposed approach has a
unique design in feature extraction form and consists mainly
of three convolution layers and one regression layer in the end
of the network. In spite of the simplicity of the training data
set, the proposed approach is shown to have a high estimation
accuracy with a reasonable high resolution. It also outperforms
the conventional methods in scenarios like low SNR and/or
small number of snapshots. Furthermore, one specific example
shows that the degree errors have a mean close to zero and
little variability.

In this work, we only discussed the single source scenario
with a fixed level of noise. Future work involves testing the
proposed method with different noise types and adjusting
the method for multiple source localization, especially for
coherent or correlated sources.
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