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Abstract—In this paper, we extend the measure-transformed
Gaussian quasi score test (MT-GQST) for the case where nuisance
parameters are present. The proposed extension is based on
a zero-expectation property of a partial Gaussian quasi score
function under the transformed null distribution. The nuisance
parameters are estimated under the null hypothesis via the
measure-transformed Gaussian quasi MLE. In the paper, we
analyze the effect of the probability measure-transformation on
the asymptotic detection performance of the extended MT-GQST.
This leads to a data-driven procedure for selection of the gener-
ating function of the considered transform, called MT-function,
which, in practice, weights the data points. Furthermore, we
provide conditions on the MT-function to ensure stability of the
asymptotic false-alarm-rate in the presence of noisy outliers. The
extended MT-GQST is applied for testing a vector parameter of
interest comprising a noisy multivariate linear data model in the
presence of nuisance parameters. Simulation study illustrates its
advantages over other robust detectors.

I. INTRODUCTION

The Gaussian quasi score test (GQST) [1]-[6] is a popular
alternative to Rao’s score test [7]-[9] when the likelihood
function is unknown. Similarly to the score test, it has the
advantage that is does not involve parameter estimation un-
der the alternative hypothesis. The GQST operates under a
hypothesized Gaussian probability model, and thus, utilizes
only the first and second-order statistical moments, leading to
implementation simplicity and tractable performance analysis.
However, when the underlying probability distribution of the
data largely deviates from the assumed Gaussian probability
model, the GQST may perform poorly, especially in the
presence of heavy-tailed noise that produces outliers.

Recently, we developed in [10], [11] a robust generalization
of the GQST, called measure-transformed GQST (MT-GQST),
that assumes a Gaussian probability model after applying a
transform to the probability measure (distribution) of the data.
The considered measure-transformation is structured by a non-
negative scalar function, called the MT-function, that weights
the observation space. By proper selection of the MT-function,
we have shown that the MT-GQST can gain resilience against
outliers along with attractive implementation simplicity that
arises from the convenient Gaussian model. The MT-GQST
was developed for a parametric composite binary hypothesis
testing problem that does not involve nuisance parameters.

In this paper, we extend the MT-GQST for the case where
nuisance parameters are present. The proposed extension is
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based on the property that the partial measure-transformed
Gaussian quasi score function (MT-GQSF), evaluated at the
null vector parameter, has a zero expectation under the trans-
formed null probability distribution. The partial MT-GQSF
is defined as the partial gradient, w.r.t. the vector parameter
of interest, of a Gaussian log-likelihood function that is
characterized by the parametric measure-transformed mean
vector and covariance matrix. Unlike the MT-GQST [10], [11],
the extended MT-GQST involves an empirical estimate of
the nuisance vector parameter under the null hypothesis. This
empirical estimate is obtained using the measure-transformed
Gaussian quasi MLE (MT-GQMLE) [12].

Under some regularity assumptions, we show that the ex-
tended version of the MT-GQST is an asymptotically constant-
false-alarm-rate (CFAR) detector, w.r.t. the MT-function and
the null vector parameter. Similarly to [10], [11], the asymp-
totic distribution of the test-statistic is shown to be central chi-
squared under the null hypothesis and non-central chi-squared
under a sequence of contiguous local alternatives. To analyze
robustness against outliers, we obtain an expansion of the
asymptotic test-size (false-alarm-rate) under a contaminated
distribution in the neighbourhood of the null hypothesis.
Using this expansion, sufficient conditions on the MT-function
to ensure stability of the asymptotic test-size are derived.
Similarly to [11], we show that the asymptotic local power
is monotonically increasing with the inverse error-covariance
matrix of the MT-GQMLE for estimating the vector parameter
of interest under the null hypothesis. This property leads to a
data driven procedure for selection of the MT-function that
minimizes the spectral norm of an empirical estimate of this
error-covariance.

The extended MT-GQST is applied for testing a vector
parameter of interest of a noisy multivariate linear data model
in the presence of nuisance parameters. The MT-function is
selected via the procedure discussed above out of a class of
zero-centered pseudo-Gaussian functions parameterized by a
width parameter. We show that the extended MT-GQST is
easy to implement and outperforms other robust detectors in
the presence of heavy-tailed noise.

II. PROBABILITY MEASURE TRANSFORM: REVIEW

In this section, we briefly review the parametric probability
measure transformation [12]. Based on this transformation, we
redefine the measure-transformed mean vector and covariance
matrix. These, will be used in the following section to derive
the proposed extension of the MT-GQST [10], [11].
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A. Probability measure transform

We define the measure space (X ,SX , PX;θ), where X ⊆
Cp is the observation space of a random vector X, SX is a
σ-algebra over X and PX;θ is a probability measure on SX
parameterized by a vector parameter θ ∈ Θ ⊆ Rm.

Definition 1 (Definition of the transform). Given a non-
negative function u : Cp → R+ satisfying

0 < E [u (X) ;PX;θ] <∞, (1)

where E [u (X) ;PX;θ] ,
∫
X
u (x) dPX;θ (x) and x ∈ X , a

transform on PX;θ is defined via the relation:

Q
(u)
X;θ (A) , Tu [PX;θ] (A) =

∫
A

ϕu (x;θ) dPX;θ (x) , (2)

where A ∈ SX and ϕu (x;θ) , u (x)/E [u (X) ;PX;θ]. The
function u (·) is called the MT-function.

By Definition 1, Q(u)
X;θ (2) is a probability measure on SX

that is absolutely continuous w.r.t. PX;θ, with Radon-Nikodym
derivative [14]:

dQ
(u)
X;θ (x)/dPX;θ (x) = ϕu (x;θ) . (3)

B. The measure-transformed mean and covariance

By relation (3), it follows that the mean vector and the
covariance matrix of X under Q(u)

X;θ, called the MT-mean and
MT-covariance, respectively, can be expressed as weighted
mean and covariance under PX;θ, i.e.,

µu(θ) , E[X;Q
(u)
X;θ] = E[Xϕu (X;θ) ;PX;θ] (4)

and

Σu(θ) , cov[X;Q
(u)
X;θ] (5)

= E[XXHϕu (X;θ) ;PX;θ]− µu(θ)µHu (θ).

The weighting function ϕu (x;θ) is defined below (1). Notice
that when u (x) is non-zero and constant valued Q(u)

X;θ = PX;θ

and then (4) and (5) coincide with the standard mean vector
and covariance matrix, respectively. Unlike the standard mean
and covariance, which do not exist for certain types of heavy-
tailed distributions, such as Cauchy’s, the MT-mean vector (4)
and the MT-covariance matrix (5) universally take finite values
when u(x) and u(x)‖x‖2 are bounded over Cp.

III. MEASURE-TRANSFORMED GAUSSIAN QUASI SCORE
TEST: THE CASE OF NUISANCE PARAMETERS

In this section, we extend the MT-GQST [10], [11] to the
case where nuisance parameters are present.

A. Problem statement

We partition the vector parameter θ as θ = [θTr ,θ
T
s ]
T
,

where θr ∈ Θr ⊆ Rmr is a vector parameter of interest
and θs ∈ Θs ⊆ Rms is a nuisance vector parameter, such that
mr+ms = m. Given a sequence of samples X1, . . . ,XN from

PX;θ, we consider the following composite binary hypothesis
testing problem:

H0 : θr = θr0 , θs = θs0 (6)
H1 : θr 6= θr0 , θs = θs0

where θr0 is known and θs0 is unknown. Similarly to [10],
[11], we consider the case where underlying parametric class
of distributions {PX;θ : θ ∈ Θ} is unknown. Partial statistical
information is available through the MT-mean vector µu(θ)
and the MT-covariance matrix Σu(θ), that are assumed to be
known parameterized functions up to some redundant factors.

B. Derivation of the test

We define the partial MT-GQSF corresponding to the vector
parameter of interest θr as the partial gradient:

ψu,r(X;θ) , ∇θrΛu(X;θ), (7)

where Λu(X;θ) , log φ(X;µu(θ),Σu(θ)) and φ(·; ·, ·) de-
notes a proper complex Gaussian probability density function.
Let θ0 , [θTr0 ,θ

T
s0 ]

T
denote the value of θ under H0. By [11,

Eqs. (66), (67)] it follows that the partial MT-GQSF satisfies:

E[ψu,r(X;θ0);Q
(u)
X;θ] = 0 for θ = θ0. (8)

Therefore, by (1) and (3) we conclude that

E[u(X)ψu,r (X;θ0) ;PX;θ] = 0 for θ = θ0. (9)

This property suggests that a test for the decision problem
(6) can be obtained through a weighted Euclidean norm of an
empirical estimate of the expectation in (9).

Hence, the extended MT-GQST is defined as:

Tu , N · η̂Tu,r(θ̃u,0)B̂−1u,r(θ̃u,0)η̂u,r(θ̃u,0)
H1

R
H0

t, (10)

where t ∈ R+ denotes a threshold,

η̂u,r(θ) ,
1

N

∑N

n=1
u(Xn)ψu,r(Xn;θ), (11)

θ̃u,0 , [θTr0 , θ̂
T

u,s0 ]T and θ̂u,s0 is the MT-GQMLE [12]
of the nuisance vector parameter θs0 under the constraint
θr = θr0 . Note that η̂u,r(θ̃u,0) is an empirical estimate of
the expectation in (9). The matrix B̂u,r(θ̃u,0) is an empirical
estimate of the asymptotic covariance matrix of

√
N η̂u,r(θ̃u,0)

under H0. The normalization in (10) by its inverse will result
in an asymptotically CFAR detector w.r.t. θr0 , θs0 and the
MT-function u(·). Explicitly, B̂u,r(θ) is defined as:

B̂u,r(θ) , Ĥu,r(θ)R̂u,r(θ)Ĥu,r(θ), (12)

where R̂u,r(θ) ∈ Rmr×mr is formed by the intersection of
the first mr rows and columns of the empirical asymptotic
error-covariance of the MT-GQMLE [12, Eq. (36)], given by:

R̂u(θ) , F̂−1u (θ)Ĝu(θ)F̂−1u (θ), (13)

with

Ĝu(θ) ,
1

N

∑N

n=1
u2 (Xn)ψu (Xn;θ)ψTu (Xn;θ) , (14)
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F̂u (θ) , − 1

N

∑N

n=1
u (Xn) Γu (Xn;θ) , (15)

ψu(X;θ) , ∇θΛu(X;θ) and Γu(X;θ) , ∇2
θΛu(X;θ). The

matrix Ĥu,r(θ) in (12) is defined as:

Ĥu,r(θ) , F̂u,r (θ)− F̂u,rs (θ) F̂−1u,s (θ) F̂Tu,rs (θ) , (16)

where F̂u,r (θ) ∈ Rmr×mr , F̂u,rs (θ) ∈ Rmr×ms and
F̂u,s (θ) ∈ Rms×ms are obtained from the partition:

F̂u (θ) =

[
F̂u,r (θ) F̂u,rs (θ)

F̂Tu,rs (θ) F̂u,s (θ)

]
. (17)

Notice that when no nuisance parameters are present, i.e.,
mr = m and ms = 0, we obtain that θr = θ, ψu,r(X;θ) =

ψu(X;θ), θ0 = θr0 = θ̃u,0, R̂u,r(θ) = R̂u(θ) and
Ĥu,r(θ) = F̂u(θ). Therefore, in this case, it can be shown that
the test (10) coincides with the one in [11, Eq. (19)]. The effect
of the MT-function u(·) on the detection performance and the
resilience against outliers will be discussed in the sequel.

C. Asymptotic performance analysis
In this subsection we analyze the asymptotic performance of

the extended MT-GQST (10). Throughout the analysis we shall
assume that the test-statistic is implemented using a sequence
of i.i.d. samples from PX;θ, and that the following regularity
conditions are satisfied:
(A-1) The parameter space Θ is compact.
(A-2) θ0 , [θTr0 ,θ

T
s0 ]

T
lies in the interior of Θ.

(A-3) µu(θ) 6= µu(θ0) or Σu(θ) 6= Σu(θ0) for any θ 6= θ0.
(A-4) µu(θ) and Σu(θ) are twice continuously differentiable.
(A-5) Σu(θ) is non-singular over Θ.
(A-6) E[u4(X);PX;θ] and E[‖X‖8u4 (X) ;PX;θ] are bounded.
(A-7) The matrices Gu (θ) (23) and Fu (θ) (24) and Fu,s (θ)

[16, Eq. (S-4)] are non-singular at θ0.
(A-8) The probability measure PX;θ has a density function

f(x;θ) that is differentiable in Θ for a.e. x ∈ X .
(A-9) The Fisher information under PX;θ is continuous at θ0.

The following theorem states the asymptotic distribution of
the test statistic under the null hypothesis H0.

Theorem 1 (Asymptotic distribution under the H0). Assume
that conditions (A-1)-(A-7) are satisfied. Then,

Tu
D−−−−→

N→∞
χ2
mr

under H0, (18)

where χ2
mr

denotes a central chi-squared distribution with mr-
degrees of freedom. [A proof is given in [16, Sec. I-A]]

Hence, the extended MT-GQST (10) is an asymptotically
CFAR detector w.r.t. θ0 and the MT-function u(·). In the
following, we derive the asymptotic distribution of the test-
statistic under a sequence of local alternatives. This will enable
to obtain the asymptotic power in a neighbourhood of θr0 .

Theorem 2 (Asymptotic distribution under local alternatives).
Assume that conditions (A-1)−(A-9) are satisfied. Further-
more, consider the following sequence of local alternatives
that converges to θr0 at a rate of 1/

√
N :

H1 : θr = θr0 + r/
√
N, θs = θs0 , (19)

where r ∈ Rmr is a non-zero locality parameter. Then,

Tu
D−−−−→

N→∞
χ2
mr

(λu(r)) under H1, (20)

where χ2
mr

(λu(r)) is a non-central chi-squared distribution
with mr-degrees of freedom and non-centrality parameter

λu(r) , rTR−1u,r(θ0)r. (21)

The matrix Ru,r(θ) is formed by intersection of the first mr

rows and column of the matrix

Ru(θ) , F−1u (θ) Gu (θ) F−1u (θ) , (22)

where

Gu (θ) , E[u2 (X)ψu (X;θ)ψTu (X;θ) ;PX;θ0 ], (23)

Fu (θ) , −E [u (X) Γu (X;θ) ;PX;θ0 ] , (24)

and ψu (x;θ), Γu (x;θ) are defined below (15). [A proof is
given in [16, Sec. I-B]]

The matrix Ru,r(θ0) is the asymptotic error covariance of
the MT-GQMLE [12] for estimating the vector parameter of
interest at θ = θ0. By theorems 1 and 2, we conclude that
under the local alternatives (19), the asymptotic power of the
proposed test at a fixed asymptotic size α is given by:

β(α)
u (r) = Hmr (λu(r), α), (25)

where Hmr
(λ, α) , Qχ2

mr
(λ)

(
Q−1χ2

mr

(α)
)

, and the functions
Qχ2

mr
(·) and Qχ2

mr
(·) (·) denote the tail probabilities of a

central and non-central chi-squared distributions, respectively.
The relation in (25) will be used in Subsection III-E for
selection of the MT-function u(·).

D. Robustness analysis

In this subsection, we analyze the robustness of the asymp-
totic test-size to outliers. To do so, we quantify the deviation
from the nominal asymptotic test-size that is caused by a small
contamination. We consider the following ε-contaminated
probability measure, also applied in [13, Ch. 13.2]:

Pε,N ,
(

1− ε/
√
N
)
PX;θ0 + (ε/

√
N)δy, (26)

where 0 ≤ ε ≤ 1, y ∈ Cp, and δy is a Dirac probability
measure at a point y that represents an outlier. Let α and
αε denote the asymptotic test-sizes under the uncontaminated
and contaminated probability distributions PX;θ0 and Pε,N ,
respectively, for a fixed threshold t. The following Theorem
states a relation between αε and α.

Theorem 3. Under (A-1)−(A-7) and the ε-contaminated mea-
sure (26)

αε = α+ ε2Iu(y;θ0) + o(ε2), (27)

where

Iu(y;θ0) , c
∥∥u(y)ψu,r(y;θ0)

∥∥2
R−1

u,r(θ0)
, (28)

the constant c , 2
∂Hmr (λ,α)

∂λ

∣∣∣
λ=0

, and Hmr
(λ, α) is defined

below (25). [A proof is given in [16, Sec. I-C]]
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Therefore, in order to obtain a stable test-size in the
presence of an infinitesimal contamination at y, the function
Iu(y;θ0) must be bounded over Cp. It can be shown that this
condition is satisfied whenever, the MT-function u(y) and the
function u(y)‖y‖2 are bounded over Cp.

E. Selection of the MT-function
Based on (25), we define the worst-case asymptotic local

power β̄(α)
u (c) , minr:‖r‖≥c β

(α)
u (r), where c > 0 denotes a

constant that lower bounds the Euclidean norm of the locality
parameter r. Similarly to [11, Corollary 1], it can be shown
that

β̄(α)
u (c) = Hmr

(γu(c), α), (29)

where, by the definition below (25), Hmr
(γu(c), α) is a tail

probability of a non-central chi-squared distribution with non-
centrality parameter γu(c) , c2‖Ru,r(θ0)‖−1S , Ru,r(θ) is
defined below (21) and ‖ · ‖S denotes the spectral norm. By
(29), one sees that the MT-function u(·) controls the worst-
case asymptotic local power through the non-centrality param-
eter γu(c). Therefore, by the property that the tail probability
of the non-central chi-squared distribution is monotonically
increasing in the non-centrality parameter [17], it follows that
for any fixed values of the constant c and the asymptotic
test-size α, minimization of the spectral norm ‖Ru,r(θ0)‖S
amounts to maximization of the worst-case local power in (29).

Hence, we propose to choose the MT-function u(·) that
minimizes ‖R̂u,r(θ̃u,0)‖S , where R̂u,r(θ) is the empirical
version of Ru,r(θ), defined below (12), and θ̃u,0 is the
restricted estimator of θ0 defined below (11). Similarly to [11,
Prop. 4], it can be shown that under conditions (A-1)−(A-9)
R̂u,r(θ̃u,0) is a consistent estimator of Ru,r(θ0) under the
local alternatives (19). We emphasize that R̂u,r(θ̃u,0) is ob-
tained using the same data samples {Xn}Nn=1 comprising the
extended MT-GQST (10). Similarly to [10], [11] we restrict the
class of MT-functions to some family of parametric functions
{u(X;ω),ω ∈ Rk} that satisfy the conditions in Definition
1 and conditions (A-3)−(A-7). The optimal MT-function pa-
rameter ωopt is the minimizer of ‖R̂u,r(θ̃u,0(ω);ω)‖S , i.e.,

ωopt = arg min
ω
‖R̂u,r(θ̃u,0(ω);ω)‖S . (30)

IV. EXAMPLE

In this section, the extended MT-GQST (10) is applied
for testing a vector parameter of interest that comprises the
following linear multivariate data model:

Xn = Arϑr + Asϑs + Wn, n = 1, . . . , N, (31)

where {Xn ∈ Cp} is an observation process, Ar ∈ Cp×qr and
As ∈ Cp×qs , qr+qs < p, are known full column-rank matrices
with linearly independent range spaces, and {Wn ∈ Cp}
is an i.i.d. noise process with centered complex spherical
distribution [15]. The real vector parameter of interest θr and
the nuisance vector parameter θs in (6) are related to the
complex vector parameters ϑr and ϑs in (31) through the
complex-to-real mappings:

θr = [<(ϑr)
T ,=(ϑr)

T ]
T

and θs = [<(ϑs)
T ,=(ϑs)

T ]
T
, (32)

respectively. Under the settings above, the exact probability
distribution of the noise process is unknown. Therefore, the
extended version of the standard score test for the case of nui-
sance parameters [7, p. 513], [8, p. 190], that requires complete
knowledge of the likelihood function, is not implementable.

In the following, we show that, unlike the standard score
test, the extended MT-GQST (10), that requires only partial
statistical information, can be implemented when the MT-
function u(·) belongs to the following wide class of functions:

{u(x) = v(‖P⊥Ax‖), v : R+ → R+}, (33)

where A , [Ar,As] and P⊥A is a projection matrix onto the
null-space of AH . Using (31)-(33), it can be shown that the
MT-mean (4) and the MT-covariance (5) are given by:

µu(θ) = Arϑr +Asϑs and Σu(θ) = cvPA + rvP
⊥
A , (34)

respectively, where cv and rv are some strictly positive con-
stants, and PA is the projection matrix onto the range-space
of A. Hence, maximization of the objective function in [12,
Eq. (23)] w.r.t. θs under the constraint θr = θr0 leads to the
following MT-GQMLE of the nuisance vector parameter under
H0:

θ̂u,s0 = (ÃT
s Ãs)

−1ÃT
s (µ̃u − Ãrθr0), (35)

where

Ãr ,

[
<(Ar) −=(Ar)
=(Ar) <(Ar)

]
, Ãs ,

[
<(As) −=(As)
=(As) <(As)

]
,

µ̃u ,
∑N
n=1 ϕ̂u(Xn)X̃n, ϕ̂u(Xn) , u(Xn)/

∑N
k=1 u(Xk)

and X̃ , [<T (X),=T (X)]T . Note that by [12, Eq. (16)] it
follows that µ̃u is the empirical MT-mean of the real random
vector X̃. Therefore, using (11)-(17), (34) and (35) it can be
shown that under the observation model (31), the test-statistic
(10) of the extended MT-GQST, for the composite hypothesis
testing problem (6), takes the simple form:

Tu =
(µ̃u − Ãrθr0)TP⊥

Ãs
ÃrM̃

−1
u2 ÃT

r P⊥
Ãs

(µ̃u − Ãrθr0)∑N
n=1 ϕ̂

2
u(Xn)

,

(36)
where M̃u , ÃT

r P⊥
Ãs

C̃uP
⊥
Ãs

Ãr, C̃u , Σ̃u + (µ̃u −
Ãrθr0)(µ̃u − Ãrθr0)T and Σ̃u ,

∑N
n=1 ϕ̂u(Xn)X̃nX̃T

n −
µ̃uµ̃

T
u . Notice that by [12, Eq. (17)] it follows that Σ̃u

is the empirical MT-covariance of the real random vector
X̃. Furthermore, it can be shown that the empirical error-
covariance of the MT-GQMLE associated with θr0 , that is
required for the optimization in (30), is given by:

R̂u,r(θ̃u,0) =
(ÃT

r P⊥
Ãs

Ãr)
−1

M̃u2(ÃT
r P⊥

Ãs
Ãr)

−1

(N
∑N
n=1 ϕ̂

2
u(Xn))

−1 , (37)

where θ̃u,0 is defined below (11).
To gain robustness against heavy-tailed noise outliers, we

specify the MT-function in a subset of (33), that is comprised
of zero-centered pseudo-Gaussian MT-functions parameterized
by a width parameter:

{u(x;ω) = exp(−‖P⊥Ax‖2/ω), ω ∈ R++}. (38)
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Similarly to [11, Sec. 5.1] it can be shown that uPG(x;ω)
satisfies the robustness conditions stated below Eq. (28) with
high probability.

In the following simulation study, we compare the detection
performance of the extended MT-GQST, to the extended
versions (for the case of nuisance parameters) of the GQST, the
omniscient score test, the quasi GLRT [6], and the quasi score
test [6]. The latter two tests, called here, GGD-QGLRT and
GGD-QST, respectively, were obtained under the assumption
that the noise process obeys a generalized Gaussian distribu-
tion (GGD) [15]. The test-statistic of the GQST was obtained
form (36) by setting u(x) = 1. The omniscient score test
was implemented according to [7, p. 513], [8, p. 190]. Exact
implementation details of the GGD-QGLRT and GGD-QST
appear in [16, Sec. II]. One can verify that implementation of
the MT-GQST (36) is significantly easier as compared to the
GGD-QGLRT and GGD-QST.

Throughout the simulation study, the vector parameter of
interest at the null hypothesis H0 was set to θr0 = 02qr ,
qr = 2, where 0q denotes a vector comprised of q zeros (2q
follows from the real-imaginary decomposition in (32)). We
considered a specific local alternative θr1 = θr0 + 0.05 ×
12qr , corresponding to r =

√
N(θr1 − θr0) in (19), where

1q denotes a vector with q unit entries. The nuisance vector
parameter was set to θs0 = 12qs , qs = 2. The observations
dimensionality was set to p = 16. The matrices Ar and As in
(31) were set to Ar = 1√

4
[a0,a1] and As = 1√

4
[a3,a4], where

ak , 1√
p [1, exp[(iφk), . . . , exp[(i(p− 1)φk)]T , φk = π/(3 +

k), k = 0, 1, 2, 3. Two types of spherical noise distributions
with scatter matrix σ2

WIp were examined: 1) Gaussian and 2)
Cauchy [15].

For each type of noise, we examined the empirical power of
the extended MT-GQST as compared to the empirical powers
of the detectors specified above versus the signal-to-noise-
ratio defined here as SNR , tr[AHA]/σ2

W, where tr[·] denotes
the trace operator. The optimum theoretical asymptotic local
power of the extended MT-GQST is also reported. The sample-
size and test-size were set to N = 1000 and α = 10−3,
respectively. For all compared tests, the threshold parameter
and the empirical power curves were obtained via 105 Monte-
Carlo trials. The optimal scale parameter ωopt of the pseudo-
Gaussian MT-function (38) was obtained according to (30) by
minimizing the spectral norm of (37) over 100 equally spaced
grid points of the closed interval Ω = [0.1, 5].

Observing Fig. 1, one sees that for the Gaussian noise the
compared tests perform similarly. However, for the heavy-
tailed Cauchy noise, the MT-GQST outperforms the compared
tests and attains detection performance that are significantly
closer to those obtained by the omniscient score test that
assumes complete knowledge of the likelihood function.

V. CONCLUSION

In this paper, the MT-GQST [10], [11] was extended to
the case where nuisance parameters are present. The extended
MT-GQST was applied for testing a vector parameter of
interest of a linear data model in the presence of Gaussian
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Fig. 1. Testing a vector parameter of interest (in the presence of nuisance
parameter) of a linear model in Gaussian noise (top) and heavy-tailed Cauchy
noise (bottom).

and heavy-tailed Cauchy noise. Simulation study demonstrates
implementation and performance advantage of the extended
MT-GQST over other robust detectors.

REFERENCES

[1] H. White, “Maximum likelihood estimation of misspecified models,” Economet-
rica: Journal of the Econometric Society, pp. 1-25, 1982.

[2] H. White, Estimation, inference and specification analysis, Cambridge university
press, 1996.

[3] R. F. Engle, “Wald, likelihood ratio, and Lagrange multiplier tests in econometrics,”
Handbook of econometrics, vol. 2, pp. 775-826, 1984.

[4] G. Fiorentini and E. Sentana, “Tests for serial dependence in static, non-Gaussian
factor models,” Unobserved components and time series econometrics, pp. 118-
163, Oxford University Press, 2015.

[5] T. Bollerslev and J. M. Wooldridge, “Quasi-maximum likelihood estimation and
inference in dynamic models with time-varying covariances,” Econometric reviews,
vol. 11, no. 2, pp. 143-172, 1992.

[6] J. T. Kent, “Robust properties of likelihood ratio tests,” Biometrika, vol. 69, no.
1, pp. 19-27, 1982.

[7] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses. Springer Texts
in Statistics, 2005.

[8] S. M. Kay, Fundamentals of statistical signal processing: detection theory,
Prentice-Hall, 1993.

[9] C. R. Rao, “Large sample tests of statistical hypotheses concerning several param-
eters with applications to problems of estimation,” Mathematical Proceedings of
the Cambridge Philosophical Society, vol. 44, no. 1, pp. 50-57, 1948.

[10] K. Todros, “Measure-transformed Gaussian quasi score test,” Proc. of EUSIPCO
2017, pp. 2115-2119.

[11] K. Todros, Robust composite binary hypothesis testing via measure transformed
quasi score test,” Signal Processing, vol. 155, pp. 202-217, Feb. 2019.

[12] K. Todros and A. O. Hero, “Measure-transformed quasi maximum likelihood
estimation,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4570-
4585, 2016.

[13] P. J. Huber, Robust statistics, Springer, 2011.
[14] K. B. Athreya and S. N. Lahiri, Measure theory and probability theory, Springer-

Verlag, 2006.
[15] E. Ollila, D. E. Tyler, V. Koivunen and H. V. Poor, “Complex elliptically symmetric

distributions: survey, new results and applications,” IEEE Transactions on Signal
Processing, vol. 60, no. 1, pp. 5597-5625, 2012.

[16] K. Todros, “Measure-transformed Gaussian quasi score test in the presence of
nuisance parameters: Supplementary material,” Technical report, Mar. 2019. Online
version: http://www.ee.bgu.ac.il/~todros/Report.pdf

[17] A. Aubel and W. Gawronski, “Analytic properties of non-central distributions,”
Applied Math. and Comp., vol. 141, pp. 3-12, 2003.

2019 27th European Signal Processing Conference (EUSIPCO)


