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Abstract—This paper presents a novel technique of factor-
ization for 2-D non-separable quaternionic paraunitary filter
banks (2-D NSQ-PUFB) based on the integer-to-integer in-
vertible quaternionic multipliers. Two-dimensional factorization
structures called ”16in-16out” and ”64in-64out” respectively
for 4-channel and 8-channel Q-PUFB based on the proposed
technique are shown. Comparison of the energy compaction level
between the 2-D separable Q-PUFB based on the 1D Q-PUFB
(8×24Q-PUFB one-dimensional coding gain is CG1D = 9.38 dB)
and 2D non-separable Q-PUFB (8 × 24 2D-NSQ-PUFB, multi-
dimensional coding gain is CGMD = 17.15 dB) for the Barbara
image shows that the 2-D non-separable Q-PUFB generates a
higher percentage of small-value coefficients, hence creates a
significant increase in the number of zero trees. This holds the
key to our coder’s superior performance.

Index Terms—quaternionic paraunitary filter banks, two-
dimensional, non-separable transform

I. INTRODUCTION

Quaternions, four-dimensional hypercomplex numbers, have
recently found application in image processing [1]–[3]. In
particular, they are used as a basis for novel transforms,
whose elementary operation is quaternion multiplication in
which one of operands is a constant with unit magnitude.
In this context, the authors have recently [4] presented a
new concept of a quaternionic building block applicable to
many existing structures of linear phase paraunitary filter
banks (Q-PUFB) and transforms, especially to the 4- and
8-channel ones, commonly used in imaging applications. The
main results were: structurally guaranteed perfect reconstruc-
tion (up to scaling) under a rough coefficient quantization,
reduced memory requirements, and good suitability for FPGA
and VLSI implementations, mitigating the disadvantage of
increased computational complexity non-critical [5].

One-dimensional linear phase PUFB’s can be applied to
the construction of multidimensional separable systems. 2-D
signals (images) are separately transformed along vertical
and horizontal directions. However, multidimensional signals
are generally non-separable, and this approach does not ex-
ploit their characteristics effectively. 2-D non-separable filter
banks (FBs) perform more efficiently for image coding than
separable FBs, because non-separable FBs may have better

frequency characteristics [6], [7]. Suzuki et al. proposed a lat-
tice structure of the 2-D non-separable perfect reconstruction
FBs and showed their efficiency for lossy-to-lossless image
coding [8].

Taking into account the advantages of the Q-PUFB in Sec-
tion II, the aim of this contribution is to show a novel technique
of factorization for 2-D non-separable quaternionic paraunitary
filter banks (2-D-NSQ-PUFB) described in Section III, in
Section IV we investigate structural transformations which
facilitate finite-precision implementation of block lifting-based
quaternion multipliers and evaluate their performance in Sec-
tion V.

II. SUMMARY OF THE Q-PUFB
As shown in [4], quaternions are especially suited to the

parameterization of 4× 4 orthogonal matrices. Namely, every
matrix belonging to special orthogonal group SO(4), can be
represented as a product of left and right unit quaternions
P and Q (|P | = 1 and |Q| = 1) ∀

R∈SO(4)
∃

P,Q∈unit quat.
R =

= M+ (P ) ·M− (Q) = M− (Q) ×M+ (P ) directly (con-
trary to Givens rotations) to preserve their orthogonality in
spite of quantization. A quaternionic critically sampled linear
phase filter bank with pairwise-mirror-image (PMI) symmetric
frequency responses PMI LP PUFBs results from substitution
(E(z) is paraunitary polyphase transfer matrices of an analysis
filter bank) [9]:

E(z) = GN−1GN−2 . . .G1E0, (1)

E0 = (2−0.5)Φ0WM diag
(
IM/2,JM/2

)
,

Gi = (2−1)ΦiWMΛM (z)WM , i = 1, N − 1,

WM =

[
IM/2 IM/2

IM/2 −IM/2

]
; ΛM (z) = diag

(
IM/2, z

−1IM/2

)
,

where N is order of the factorization; IM/2 and JM/2 denote
the M/2 ×M/2 identity and reversal matrices, respectively;
i = 1, N − 1 is interval notation 1 ≤ i ≤ N − 1.

A 4-channel PMI LP Q-PUFB realized according to the
following factorization of the matrices Φi and ΦN−1:

Φi = M+ (Pi) (2)
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ΦN−1 = M+ (PN−1) · diag
(
JM/2 · ΓM/2, IM/2

)
,

where ΓM/2 is diagonal matrix the elements of which are
defined as γmm = (−1)m−1 , m = 1,M − 1.

The corresponding factorization of the matrices Φi and
ΦN−1 for an 8-channel PMI LP Q-PUFB is shown in [4].

III. 2D NON-SEPARABLE Q-PUFB

A. 2D non-separable transform

In general case 1D transformation can be formulated as
follows: yn,n = Θn,n ·xn,n, where Θn,n is conversion matrix,
whose size is n × n); yn,n is transform result n × n, xn,n

is block of input signal size n × n. The two-dimensional
transform based on the orthogonal transform Θn,n applied
to 2D input signal xn,n separately by column and row is
expressed by

yn,n = Θn,n · xn,n ·ΘT
n,n. (3)

Comparing the 1D and 2D transformations, we can note that
the 2D transform is performed over a size signal n× n, it is
executed in blocks. Also, in order to perform a 2D transform,
it is needed to obtain an intermediate result xn,nΘT

n,n, which
requires additional memory of size n× n.

The given block of input signal xn,n can be transformed
into vector xn·n,1 and zn·n,1 respectively as follows

xn·n,1 = tv (xn,n):

[x1,1 . . . x1,n . . . xn,1 . . . xn,n]
T
tv←−
[
xn,n

]
;

zn·n,1 = tv
(
xT
n,n

)
:

[x1,1 . . . xn,1 . . . x1,n . . . xn,n]
T
tv←−
[
xn,n

T
]
.

The transformation tvtvtv only performs a line-by-line mapping
of the matrices xn,n, xT

n,n into vectors xn·n,1 and zn·n,1. On
the basis of given definitions, the vector zn·n,1 = P ·xn·n,1 =
= P · tv (xn,n), where P is the permutation matrix of size
(n2 × n2), and thus

tv
(
xT
n,n

)
= P · tv (xn,n) = P · xn·n,1. (4)

Two-dimensional transform (3) can be rewritten as

yn,n = Θn,n · xn,n ·ΘT
n,n = Θn,n ·

(
Θn,n · xT

n,n

)T
. (5)

Based on the definitions below, a 2D transformation result
yn,n can be represented as the vector:

yn·n,1 = D (Θ) ·P ·D (Θ) ·P · xn·n,1︸ ︷︷ ︸
xT
n,n︸ ︷︷ ︸

Θn,n·xT
n,n︸ ︷︷ ︸

(Θn,n·xT
n,n)

T︸ ︷︷ ︸
Θn,n·xn,n·ΘT

n,n

= Θ̈n2,n2 · xn·n,1,

where D (Θ) denotes the matrix with transform matrices Θn,n

on the main diagonal (the number of matrices Θn,n is n),
D (Θ) = diag (Θ, . . . ,Θ)︸ ︷︷ ︸

n times

= In⊗Θn,n also can be described

using Kronecker tensor product ⊗ with identity matrix In;
Θ̈n2,n2 is the 2D transformation matrix.

It may seem that the complexity of the hardware implemen-
tation of the given conversion has increased, but this is not so.
The calculation of yn,n requires performing (2 · n2) vector
multiplication operations, which is equivalent for the case of
yn·n,1 (if we neglect multiplication by 0). Multiplication by
the matrix P is the commutation of the input signal, which
does not incur additional hardware costs.

B. Two-dimensional non-separable PMI LP Q-PUFB

When a factorization of PMI LP Q-PUFB matrix E (5) is
applied to a 2D input signal xn,n in horizontal and vertical
directions, the output signal yn,n is expressed as

yn,n = E · xn,n ·ET = GN−1 . . .G1E0xn,n×
×ET

0 GT
1 . . .G

T
N−1.

(6)

On the other hand

yn·n,1 = Ë · xn·n,1 = G̈N−1(z)G̈N−2(z) · . . .
. . . · G̈1(z) · Ë0 · xn·n,1,

(7)

where ¨ denotes the 2D-transformation matrix. The underscore
in equation (12) shows the sequence of matrix replacement to
obtain equation (7). This Eq. (6) means that the 2D implemen-
tation of Gk is performed after that of Gk−1 (1 ≤ k ≤ N−1),
i.e., the matrices WM , ΛM (z), M+ (P ) can be operated
separately. The resulting representations of the matrices WM ,
ΛM (z) as 2D transform are

Ẅ = D (WM ) ·P ·D (WM ) ·P, (8)

Λ̈(z) = D (ΛM (z)) ·P ·D (ΛM (z)) ·P, (9)

G̈(z) = D (G(z)) ·P ·D (G(z)) ·P. (10)

For a 4-channel PMI LP Q-PUFB (M = 4), the two-
dimensional analogues of the matrices Φi and ΦN−1 are
defined as follows:

Φ̈i = D
(
M+ (Pi)

)
·P ·D

(
M+ (Pi)

)
·P,

Φ̈N−1 = Φ̈i · S̈1, S̈1 = D (S1) ·P ·D (S1) ·P,
S1 = diag

(
JM/2 · ΓM/2, IM/2

)
.

(11)

Thus, the factorization components (7) of the 2-D non-
separable 4-channel PMI LP Q-PUFB, whose prototype filter
is given by the relations (2), are represented by the following
expressions (8-11).

The structure of the critically sampled 2-D non-separable
4-channel PMI LP Q-PUFB for N = 2 in according with the
factorizations (8-11) .The given factorization structure of 2-D
non-separable PMI LP Q-PUFB will be call ”16in-16out” and
for two dimensional 8-channel Q-PUFB — ”64in-64out”. The
analysis of the 2-D non-separable PMI LP Q-PUFB circuit
shows that it can be mapped to parallel-pipeline processor
structures with a minimum time of latency 2N quaternion
multiplication operations, where N is transformation order of
the PMI LP Q-PUFB. It should be noted that the latency
of parallel-pipeline processing does not depend on the size
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yn,n = . . . · (2−0.5) ·Φ0 ·W · diag
(
IM/2,JM/2

)
· xn,n · diag

(
IM/2,JM/2

)T ·WT ·ΦT
0 · (2−0.5) · . . . (12)

of the original image in contrast to the conventional 2-D
transform (3).

IV. THE INTEGER IMPLEMENTATION OF THE
2-D-NSQ-PUFBS

Analysis of the equation (2) have shown that quater-
nion multiplier (Q-MUL) with different multiplication matri-
ces: M+ (Q), M− (Q), M+

(
Q
)
, M− (Q) is an important

building block for Q-PUFB. The mentioned algorithm use
quaternion multiplications in which one of the operands is
a constant with unit magnitude. Q-MULs are required to be
invertible transforms, i.e. integer-to-integer transform, to apply
2-D NSQ-PUFB for lossless image coding. The Q-MUL cir-
cuit should be more hardware efficient than simply switching
between four different circuits. So, Q-MUL should be versatile
quaternion multiplier. The most important design parameters
are data throughput, resource consumption and arithmetic pre-
cision. The memory-efficient and high-performance quaternion
multiplier architecture based on the ROM-based DA modules
and 4D CORDIC algorithm for multiplying quaternions are
presented in [10] and [11] respectively. The main disadvan-
tages of the given ROM-based DA quaternion multiplier and
4D CORDIC scheme [11] are the following: those are not
invertible and not applicable to L2L image coding directly.

A. The block-lifting quaternionic multiplier structure as
integer-to-integer transform

Block-lifting-based quaternion multiplication operator can
be rewritten as follows [12]:

M+ (Q) = ±
[
C(Q) −S(Q)
S(Q) C(Q)

]
,

C(Q) =

[
q1 −q2
q2 q1

]
,S(Q) =

[
q3 q4
q4 −q3

]
.

M+ (Q) = ±
[
I2 F(Q)
0 I2

]
︸ ︷︷ ︸

U(Q)

[
I2 0

G(Q) I2

]
︸ ︷︷ ︸

L(Q)

[
I2 H(Q)
0 I2

]
︸ ︷︷ ︸

V(Q)

.

M− (Q) =

= ±
[
I2 Γ2H(Q)
0 I2

]
︸ ︷︷ ︸

V(Q)

[
I2 0

G(Q)Γ2 I2

]
︸ ︷︷ ︸

L(q)

[
I2 Γ2F(Q)
0 I2

]
︸ ︷︷ ︸

U(q)

.

Multiplication operators M+ (Q) and M− (Q) can be con-
sidered as an extension of 2D rotation in the case of 4D.
A set of matrix equations can be defined for a given unit-
norm hypercomplex coefficient Q and multiplication matrix.
At the same time the set can be solved uniquely for F(Q),
G(Q), and H(Q), provided that S(Q) is nonsingular, or more
specifically, nonzero: F(Q) = (C(Q)− I2)S(Q)

−1, G(Q) =
= S(Q), H(Q) = S(Q)

−1
(C(Q)−I2). Its elements represent

real-valued lifting coefficients. The scheme comprises only

12 multiply-add operations, which form a sequence of lifting
steps. Besides the computational load reduces.

Thus, the structure of the reversible multiplication operator
of quaternions based on the block lifting circuit parametriza-
tion is a cascade connection of block matrices F(Q), G(Q),
and H(Q), and their inverse inclusion with a negative sign
(the inverse transform is the multiplication by the conjugate
quaternion Q, because M+

(
Q
)
= M+ (Q)

T ). In this case,
round-off errors of the corresponding multiplication results
are mutually compensated by sections of direct and inverse
transformations. The input vector x passes through three
stages of processing F(Q), G(Q), and H(Q), to produce
M+ (Q)x (see Fig. 1).

However block-lifting coefficients F(Q), G(Q), and H(Q)
can not fit the dynamic range [−1, 1] of fixed point number,
it can be solved using modifications of original quaternion Q̃,
whose lifting coefficients of multiplication operator M±

(
Q̃
)

are in dynamic range [−1, 1] [12].

M+ (Q) =

Ppost ·M+
(
Q̃
)
·Ppre, if det (PQ) = 1,

Ppost ·M−
(
Q̃
)
·Ppre, if det (PQ) = −1,

where Q̃ is a quaternion whose coefficients are rearranged in
some way, for example, Q = q1 + q2i + q3j + q4k and Q̃ =
= −q3−q1i+q4j+q2k; in same time Q̃ = PQ ·Q where PQ

is a quaternion permutation matrix, while for multiplication
operator M± (Q) matrices Ppost, Ppre are used for pre- and
post-processing (see Fig. 1).
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Fig. 1. Q-MUL block-lifting structure for the M+ (Q)

In order to unify the quaternion multiplier structure, only
left multiplication M+ (Q) can be used, to adjust it to the re-
quired multiplication operator M+

(
Q
)
, M− (Q) or M− (Q)

following rules for modifying block-lifting matrix coefficients
F(Q), G(Q), H(Q) and permutation matrices Ppre, Ppost

are described in Table I.
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Taking into account M+
(
Q
)
= M+ (Q)

T , block-lifting
structure for modified quaternion Q̃ for target operator
M+

(
Q
)

(rule 2), defines as follows:

M+
(
Q
)
= PT

pre ·VT (Q) · LT (Q) ·UT (Q) ·PT
post.

But one can notice that M+
(
Q
)
= −PQ ·M+ (Q) · PQ,

where PQ = Γ4J4 and P2
Q = −I4. Thus, the rule 2 is proved

as:

M+
(
Q
)
= PT

pre×

×
[
I2 −H(Q)
0 I2

] [
I2 0

−G(Q) I2

] [
I2 −F(Q)
0 I2

]
·PT

post.

Based on the quaternion multiplication properties
M− (Q) = DC ·M+ (Q)

T ·DC = DC ·M+
(
Q
)
·DC , where

DC = diag (1,−I3). Taking into account above equation and
rules 3 form Table I is:

M− (Q) = DC ·PT
pre ·

[
I2 −H(Q)
0 I2

]
×

×
[

I2 0
−G(Q) I2

] [
I2 −F(Q)
0 I2

]
·PT

post ·DC .

Block-lifting structure modified quaternion Q̃ for target
operator M− (Q) (rule 4, Table I), will be defined M− (Q) =
= DC ·M+

(
Q
)T ·DC and taking into account M+

(
Q
)
=

= M+ (Q)
T :

M− (Q) = DC ·M+ (Q)
T ·DC = DC ·Ppost×

×
[
I2 F(Q)
0 I2

]
·
[

I2 0
G(Q) I2

] [
I2 H(Q)
0 I2

]
·Ppre ·DC .

TABLE I
MODIFICATION RULES FOR M± (Q)

Rule Target
op.

Modification rule for Q̃

1 M+ (Q)
P̃pre = Ppre; P̃post = Ppost;

F̃ = F; G̃ = G; H̃ = H;

2 M+
(
Q
) P̃pre = PT

post; P̃post = PT
pre;

F̃ = −F; G̃ = −G; H̃ = −H;

3 M− (Q)
P̃pre = (PT

post) ·Dc; P̃post = Dc · (PT
pre);

F̃ = −H; G̃ = −G; H̃ = −F;

4 M− (Q) P̃pre = Ppre ·Dc; P̃post = Dc ·Ppost;

F̃ = F; G̃ = G; H̃ = H;

B. Pipeline structure of the integer Q-MUL multiplier

Distributed arithmetic [13] has been proposed as an efficient
method for computing vector inner products. The process
of obtaining the result of multiplying the input quaternion
X = [x1, x2, x3, x4]T by the constant-quaternion Q is divided
into five stages: pre Ppre and post Ppost processing for
multiplying by a modified quaternion Q̃ and three stages
obtaining the inner products r = [r1, r2]

T corresponding ex-
pansions: V(Q̃), L(Q̃), U(Q̃) on the adder-based distributed
arithmetic (DA∑) [13]. The efficient procedure for computing
inner products r between fixed coefficients of the block-lifting

step (the matrices F, G and H) and variable vectors data X
can be formulated in terms of the DA∑ the following way (for
H stage, see Fig. 1):

r1 =
[
1 . . . 1

]
×

×


−h{0}11 · x3 −h{0}12 · x4

2−1 · h{1}11 · x3 2−1 · h{1}12 · x4
...

...
2−L · h{L}11 · x3 2−L · h{L}12 · x4


[
1
1

]
,

(13)

where h
{t}
ij ∈ {0, 1} are binary coefficients elements of the

stage matrix H in 2’s-complement code, ij – element index,
t – bit position, B is word length, L = B−1 is less significant
bit position, h{0}ij – sign bit. The equation (13) shows the
organization of the inner products r calculation based on the
two serial-connected processor elements (PE1), (PE2) and the
accumulator (ACC) (see Fig. 2). The calculation of inner
product is carried out by summing all elements of the matrix:
the summation of the rows element is carried out by (PE1)
and (PE2), the resulting elements of column are formed in the
(ACC). At the same time, at the beginning of the calculation
cycle, variables x1 and x2 are written to the accumulators,
respectively. Hence, computation sum of h{0}ij requires taking
into account the control sign signal Ts (see Fig. 2). The latency
of one block-lifting stage (V(Q̃)) is u 3Bt∑, where t∑ is
time of adder. Thus, the performance of pipeline QMUL is
u (3Bt∑)−1 quaternion multiplication per second.

The same expression can be obtained for r2 using second
row of matrix H (h21 and h22). For stages V(Q̃), L(Q̃), U(Q̃)
result formation take B clock cycles, permutation matrices
Ppre and Ppost do not require additional logic elements, a
sign change can be taken into account at subsequent stages.

Ppre Ppost

1

2

3

4

1

2

3

4

3
4
1

3

4

3

4

1

REG

REG

h11

PE1

h12

PE2 ACC

3
4
2

2

h21

PE1

h22

PE2

2
1
4

2

1

2

1

4

REG

REG

g11

PE1

g12

PE2 ACC

2
1
3

3

g21

PE1

g22

PE2

3
4
1

3

4

3

4

1

REG

REG

f11

PE1

f12

PE2 ACC

3
4
2

2

f21

PE1

f22

PE2

Processor element 1 
(PE1)

SLR

B

B
1

&

B

PE1

B

B

B

+

+

B

B

(PE2)

ACC ACC ACC

B

Accumulator (ACC)

+

±

SAR

B

REG
+

+

B

Ts

h11

x3 x4

h12

x1

r1

Fig. 2. Pipeline structure of Q-MUL (SAR – shift arithmetic right, SLR –
shift logical left, B – word length, Ts – signal of sign bit)
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Fig. 3. 8-channel 2D NSQ-PUFB: (a) – magnitude response of the 3rd
channel, (b) – total magnitude response of analysis-synthesis system

V. DESIGN EXAMPLES

Design problem of a two dimensional non-separable
Int-Q-PUFB can be defined as: find a set of quaternions Pi

and Qi for a 1D Q-PUFB and word length B of block-lifting
coefficients F(q), G(q), and H(q), which provide high value
of the coding gain (CGMD) of 2D NSB Q-PUFB with the fol-
lowing constraints: the maximum stopband attenuation (SBE)
measured on terms of energy, as a result of quantization of
block-lifting coefficients. The coding gain CGMD of 2D NSB
Q-PUFB and the transition to new iteration of the synthesis
algorithm is determined according to the following procedure:
1) white noise n × n is generated; 2) an input image xn,n

is formed on the basis of the AR(1) model applied to rows
and columns consistently; 3) the input image is processed
by synthesized 2D NSB Q-PUFB; 4) coding gain CGMD is
calculated. We design critically sampled 4-channel (12 taps)
and 8-channels (24 taps) 2-D non-separable PMI LP Q-PUFB
for the factorisation order N = 2. The coding gains CGMD

of 2-D non-separable PMI LP Q-PUFB for the isotropic
autocorrelation function with the correlation factor ρ = 0.95
are the following: CGMD = 13.4 dB for “16in-16out“ struc-
ture (proposed structure “16in-16out“ in comparison with 2D
PUFB in [6] CGMD = 11.55 dB is almost two decibels
more); structure “64in-64out“: CGMD = 17.15 dB, amplitude
response of the third analysis filter is shown in fig. 3a,
SBE ≤ −20 dB, direct current attenuation DCatt ≈ −300 dB.

The total magnitude response of the analysis-synthesis
system based on the 2D NSB PMI LP Q-PUFB (structure
“64in-64out“) is plane at 0 dB (see Fig. 3b). Thus, the given
2-D non-separable filter bank is a perfect reconstruction sys-
tem. The dependence of the coding gain on the word length
is following: B = 8 bits CGMD = 17.11 dB; B = 12 bits
CGMD = 17.15 dB; B = 16 bits CGMD = 17.15 dB.

Compares the energy compaction level between the 2D
separable Q-PUFB based on the 1D Q-PUFB (8×24 Q-PUFB
CG1D = 9.38 dB) and 2D non-separable Q-PUFB (8 ×
24 2D-NSQ-PUFB, CGMD = 17.15 dB) proposed in this
article, for the Barbara image, shows that the 2D non-separable
Q-PUFB consistently generates a higher percentage of small-
value coefficients, hence creates a significant increase in the
number of zero trees.

VI. CONCLUSION

We devised the 2-D technique of non-separable factorization
for 4-th and 8-th chanel PMI LP Q-PUFBs based on the
integer-to-integer invertible quaternionic multipliers. The pro-
posed multiplier is versatile, which allows using only M+ (Q)
left multiplication matrix. The 2-D-NSQ-PUFB based on
the given QMUL is a perfect reconstruction filter bank for
finite precision, compared to know solutions it have less
implementation complexity, higher coding gain and stopband
attenuation. The factorization structures of 2-D NSQ-PUFB
can be easily mapped on the parallel-pipeline architecture of
quternionic multipliers. It should be noted that the latency of
parallel-pipeline processing does not depend on the size of the
original image in contrast to the conventional 2-D transform.

This work was supported by Belarusian Republican Foun-
dation for Fundamental Research (project no. F18MV-016).
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