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Abstract—Ultra-wideband (UWB) devices have been largely
considered for indoor location systems due to their high accuracy.
However, as in other wireless systems, such accuracy is signif-
icantly degraded under non-line-of-sight (NLOS) propagation
conditions. Therefore, the identification of NLOS conditions is
essential to mitigate inaccuracies due to NLOS propagation.
Nonetheless, most of the techniques considered to identify NLOS
situations are based on the study of the channel impulse response
(CIR), which is not practical and even becomes unfeasible when
employing low-cost UWB hardware. This is precisely the main
motivation of this work, to introduce a classification system based
on the statistics of both the received signal strength (RSS) and
range available from low-cost UWB devices.

We analyze the effect of considering different statistic sets of
both the RSS and range as features to feed a support vector
machine (SVM) classifier, which is experimentally evaluated by
means of measurements carried out in a real scenario where both
line-of-sight (LOS) and NLOS conditions are present.

Index Terms—Ultra-wideband, NLOS Classification, RSS,
ranging, SVM.

I. INTRODUCTION

Ultra-wideband (UWB) location systems have become in-
creasingly popular due to their capabilities to provide accurate
positioning based on the signal time of arrival (TOA) or time
difference of arrival (TDOA). When there is a clear line-of-
sight (LOS) between emitter and receiver devices, the perfor-
mance of UWB location systems is excellent. Unfortunately,
multipath effects are frequently found in indoor environments,
particularly in non-line-of-sight (NLOS) situations. Although
UWB systems are more robust against multipath than those
relying on received signal strength (RSS) (e.g., those based
on WiFi, Bluetooth or radio-frequency identification (RFID)),
in the absence of a clear LOS, the receiver might select a
secondary delayed path instead of the primary one, leading to
an erroneous estimation.

Therefore, NLOS detection has revealed as one of the
most important tasks in order to mitigate the error caused by
multipath propagation and hence to improve the accuracy of
UWB location systems. NLOS detection can be addressed con-
sidering different techniques, being statistical analysis applied
to range estimations one of them [1], [2]. Alternatively, several
detectors based on the estimated channel impulse response
(CIR) have been proposed in the literature [3]–[6]. All of them
rely on the idea that, under LOS propagation conditions, the
energy of the first path is significantly larger than that of the
secondary paths, but this behaviour is not found in NLOS
situations. NLOS detection can be performed at a higher

level, once the ranging estimations have been integrated into
a location algorithm. In this case, additional information such
as the geometry of the scenario or historical data (in the case
of tracking algorithms) is also used [7].

In this work, we consider machine learning techniques to
detect NLOS conditions using measurements carried out with
low-cost UWB hardware in an indoor scenario. More specif-
ically, we propose a support vector machine (SVM) classifier
based on statistics of both the RSS and range parameters
provided by UWB devices. Considering a real indoor scenario,
the classifier is experimentally evaluated when identifying
LOS and NLOS situations. Additionally, the measurement data
are publicly available [8].

The paper is structured as follows: Details of the hardware
used in the experiments and a description of the data supplied
by them are provided in Section II. Section III describes the
measurement scenario and the methodology used to record the
measurements. Details of the SVM classifier are found in Sec-
tion IV, including the combination of the parameter statistics
and the methodology employed to process the measurements.
Section V shows the results obtained and, finally, Section VI
is devoted to the conclusions.

II. HARDWARE

This paper focuses on Pozyx hardware [9], a low-cost
hardware based on modules integrating a UWB transceiver
and several inertial sensors. They can be used as an Arduino
board or connected to a computer via USB. The low cost of
these devices has converted them into a very popular solution
to perform indoor localization. They rely on a two-way (round
trip) TOA-based algorithm to estimate the distance (range)
between two nodes: a tag and an anchor. First, a poll signal is
sent from the tag towards the anchor. Next, the anchor returns
immediately a response signal to the tag. Finally, the so-called
final message is sent from the tag to the anchor to compute the
time of flight, from which the distance between the nodes is
estimated. In a location system, multiple anchors (a minimum
of three for a 2D location, or four for 3D) are considered,
being possible to estimate the position of a given tag from the
ranges between the tag and each of the anchors.

The Decawave UWB transceiver [10] inside the Pozyx
hardware provides the RSS and range estimations from the
incoming signal corresponding to the first path whose energy
exceeds a predefined threshold value. Given that both the RSS
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and range parameters are affected by noise and bias [11], the
final estimate of the tag position will not be exact.

An additional hindrance arising in NLOS situations is mul-
tipath, which might originate a situation in which the energy
of the signal corresponding to the first path does not exceed
the aforementioned threshold, whereas the energy of a signal
from a secondary delayed path does surpass such a threshold,
yielding an overestimation of the distance between the nodes.
Although Pozyx devices are able to output a set of samples of
the CIR when a new signal arrives, range estimations based
on the provided CIR present the following constraints:

• To obtain the CIR information it is necessary to gather
a significant amount of data through the serial port (
4064 bytes [12]) , hence originating a long latency of
about one second just to transfer the data. This leads
to a long delay for estimating the range, making this
approach unfeasible when the estimated position needs
to be updated at a high frequency.

• Pozyx devices can be used in two different modes: local
and remote. In the local mode, a tag starts a two-way
ranging protocol with an anchor, obtaining the range, the
RSS and possibly the CIR. However, in the remote mode,
a monitoring node commands a tag the beginning of a
ranging process with an anchor. The tag will return the
obtained ranging and RSS values to the monitoring node,
but the available CIR data corresponds to the wireless link
between the tag and the monitoring node instead of the
CIR of interest, which is the one from the tag and the
anchor.

Therefore, under the above-mentioned constraints, relying on
CIR estimations is not a feasible approach in real-time applica-
tions when dealing with low-cost UWB solutions, such as the
one from Pozyx. On the other hand, both the RSS and range
are readily available even when the nodes operate in the remote
mode. Additionally, because of the small number of bytes
required by each range, up to 20 measurements per second can
be acquired, thus making feasible to obtain statistics from both
the RSS and range when considering real-time applications.

III. EXPERIMENTAL SETUP

We have carried out a measurement campaign indoors, in
the corridors of the so-called Scientific Area Building, placed
at the Elviña Campus at the University of A Coruña, Spain.
Five Pozyx devices were distributed as shown in Fig. 1. A
monitoring device (M) was attached to a computer to record
the range measurements between the tag (T) and the other
three anchors (namely A, B and C) working in the remote
mode. This way, the tag can be moved down the aisle without
requiring a computer attached to it to store the measurements.
The anchors A, B, and C remain static in their positions during
the whole measurement campaign, whereas the measurements
between the tag and each of the anchors were recorded at
different tag positions spaced 0.5m apart along the aisle,
storing measurements for each position during 90 seconds at
20 measurements per second, which is a period of 50ms.

A

B

CT

M

2.5m 2.5m

1m

0.5m

Anchor
Tag
Read Node
Measurement point

Fig. 1. Experimental setup.
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Fig. 2. Parameter measurements.

At the host side, an Arduino Uno device was attached to
the monitoring device (M) to read the measurements through
the serial port and to store them in a computer via USB.
In such a computer, a Robot Operating System (ROS) [13]
instance was in charge of reading, parsing and storing both
the range and RSS values together with the timestamp and
the actual distance value between the tag and the anchors.
Once the measurements were recorded, they were exported to
be processed by algorithms developed in Matlab. Such data
files are publicly available [8].

A. NLOS Model

Fig. 2 shows the measurements of the RSS and range
parameters obtained from the scenario shown in Fig. 1. From
Fig. 2, it is not obvious how to distinguish between LOS
and NLOS conditions, especially if we consider two different
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NLOS categories previously proposed in the literature [2],
[14]:

• Soft NLOS (NLOS-S) is a condition found when both
the first and secondary paths are attenuated by the same
obstacle (e.g., a wall, as in our scenario). In this case, the
receiver can detect correctly the first path if the energy
level is sufficiently high for the signal to be decoded.

• Hard NLOS (NLOS-H) appears when the emitter and
the receiver are placed at positions without clear LOS
between them, thus all signals impinging the receiver
correspond to reflections. Therefore, the secondary paths
can reach the receiver with more o similar level of energy
than the first path (which is blocked in most of the times).

This classification of NLOS is very important because the
mitigation of its effects will be done differently. However, the
problem observed in Fig. 2 shows that this identification is not
easy. On the other hand, the LOS condition, where both the
emitter and receiver have an open space between them such
that the first path can be received without obstacles, is much
easier to identify.

In the scenario of our indoor measurement campaign, the
three considered anchors have been strategically placed to ob-
tain a representation of each of the three possible propagation
conditions with respect to the tag: Node A experiences NLOS-
H, Node B corresponds to LOS and Node C models NLOS-S.

IV. MACHINE LEARNING

Machine learning techniques are well known in classifi-
cation problems [15]. In particular, we consider the classic
SVM algorithm [16], a supervised algorithm which tries to
find the hyperplane that maximizes the distance between the
values of its input features. The algorithm performance is
based on a set of parameters (kernel type, regularization, and
sigma parameters mainly) that can be adjusted after a process
of cross-validation, selecting the one that causes the lowest
misclassification rate.

The SVM algorithm typically follows the steps below:
1) A set from the original measurements is selected as

the training data, whereas the remaining data is used
as the test set. Notice that different measurements at the
same position can be included in both sets. Although this
condition might be seem unrealistic, it does not impact
on the parameters comparative.

2) The training set is used to train the SVM model using
a cross-validation schema. This means that, in an itera-
tive process, the training set is split into several sub-
sets in order to compare different realizations of the
SVM model depending on some configurations of the
algorithm. The most successful configuration is the one
selected to be used in the test stage.

3) Once the training stage has finished, the SVM model is
applied over the test set to get an estimation of its real
performance.

In our case, all the data obtained from the measurement
campaign will be shuffled in order to obtain the training and
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Fig. 3. Success rate of a LOS-NLOS classifier with individual statistics
(features).

the test sets with a mixture of NLOS-H, NLOS-S and LOS
conditions.

In our work, we consider the following statistics, which will
be the input features for the SVM algorithm:

• µrss, µran: Mean RSS and mean range, respectively.
• σrss, σran: Standard deviation of the RSS and range,

respectively.
• γrss, γran: Skewness of the RSS and range, respectively.
• κrss, κran: Kurtosis of the RSS and range, respectively.

Note that, as mentioned in Section II, Pozyx devices produce
noisy values. Therefore, to generate the above-mentioned
statistics, it is necessary to consider a window size to group the
raw measurement values, similarly to what has been already
done in other works such as [17] for the RSS in a WiFi
system. Consequently, the window size will be an additional
system configuration parameter impacting on the latency of
the classification process.

V. RESULTS

In order to assess the classifier performance when separating
LOS and NLOS conditions, Fig. 3 shows the success rate
for the different statistics (features) mentioned in Section IV
when they are considered individually. Fig. 3 reveals that the
separation between LOS and NLOS is performed very well
since, according to Fig. 2, these two conditions are easier to
identify. In particular, the statistics corresponding to the RSS
and range means and variances, µrss, µran, σrss and σran,
respectively, are the ones providing the best results.

However, it also follows from Fig. 2 that separating NLOS-
H from NLOS-S is much more challenging, as revealed in
Fig. 4. As expected, this classification is more difficult to
perform because both NLOS conditions are similar. However,
our classifier behaves well again for the same statistics that
worked also well in the results shown in Fig. 3.
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Fig. 4. Success rate of a NLOS-H and NLOS-S classifier with individual
statistics.
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Fig. 5. Success rate a joint classifier of LOS, NLOS-H and NLOS-S when
the sets of statistics specified in Table I are considered.

TABLE I
FEATURES SETS

Feature Set 1 Set 2 Set 3 Set 4 Set 5

µrss X X X

µran X X X

σrss X X X

σran X X X

Finally, considering that µrss, µran, σrss and σran perform
the best according to the results shown in Figs. 3 and 4, we
now consider combinations of them (see Table I) as the input
features of the classifier. We discard the skewness and the

kurtosis statistics for the RSS and ranging because they do not
provide an improvement in the performance of the classifier. In
this experiment, the performance of the classifier is evaluated
when considering the joint identification of LOS, NLOS-H
and NLOS-S. Fig. 5 shows that, even in this more complex
situation where the three propagation conditions have to be
jointly identified, our classifier does a good job. In this sce-
nario, the sets S1 and S5 are the most suitable, providing the
highest robustness levels for different propagation situations.
In fact, in this experiment, we have used a restricted group
of combinations, but we could complete Table I considering
other combinations which, in other scenarios, could behave
better.

According to Figs. 3 to 5, the performance of the classifier
improves with the increase of the window size in most of
the cases. However, the larger the window size, the longer
the latency introduced in the estimation process. Although it
is necessary to consider the observed trade-off between the
classifier performance and the introduced latency due to the
window size, when considering the sets S1 and S5 (see Fig. 5),
the classifier performance reaches values close to its maximum
for windows with a size equal to 5, which can be considered
a low window size.

VI. CONCLUSIONS

In this work, we analyzed the viability of using machine
learning techniques to identify NLOS conditions in an actual
indoor scenario when low-cost UWB devices are employed
and CIR estimations are not feasible. In particular, special
interest is shown in classifying two different NLOS categories
as this will be of utmost importance for mitigating their effects.
To this end, a measurement campaign has been carried out in
an indoor scenario and three possible propagation conditions
were considered: LOS, hard NLOS and soft NLOS. In order
to classify these conditions, only the RSS and the range
have been considered, since they are the only parameters
available from low-cost UWB hardware. Different statistics
were calculated from the measured parameters and they were
used as the inputs (features) of a classifier based on the well
known SVM algorithm.

The results prove that the joint classification among LOS,
hard NLOS and soft NLOS is performed at a very high success
rate (close to 1) when the mean of both the RSS and range
are considered.
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