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Abstract—A precise estimation of the Direction of Arrival
(DOA) of a signal is the fundamental functional requirement
of antenna technology. A switched receiver system results in
substantial reduction in hardware components, measurement
complexity and cost of the entire system. In this paper, three
diverse calibration methods are investigated on an array antenna
with a dual channel switched receiver system. The calibration
matrices are generated from the real measurements and imple-
mented on the simulated and the real measurements. Robustness
and flexibility of the calibration methods are compared in this
paper. A conventional beamformer technique is implemented to
perform Direction Finding (DF) of the calibrated system.

Index Terms—switched receiver system, antenna array, cali-
bration, multichannel signal processing

I. INTRODUCTION

Estimation of Direction of Arrival of a signal is the primary
objective of a Direction Finding algorithm. Although there are
various high quality DF methods available, these processes
are sensitive to the errors involved in the complete system.
These errors affect the amplitude and phase of the signal
received by an array which results in poor DOA estimation.
The errors in an array antenna and in a receiver system, can
be classified into static and dynamic [2]. A static error is
caused by electrical and mechanical manufacturing tolerances,
whereas dynamic errors are highly dependent on temperature
and operating conditions. Mutual coupling is another major
issue, which leads to mismatches of phase and amplitude
between the elements of an array.

Antennas should be calibrated in order to compensate the
deviations caused in a system because calibrated antennas
possess the lowest signal-to-noise ratio requirement [3]. Cal-
ibration can be classified into offline and online. Offline
methods require sources with known direction of the incident
signals, whereas online methods do not. Offline and online
methods were implemented and investigated in [4]–[9].

The typical measurement setup of an array antenna requires
an equal number of receiving channels and antenna elements.
If an array consists of many elements, then providing every
element with a dedicated channel leads to an enormous in-
crease of cost, measurement complexity and overall size of
the system. In [10]–[12], the concept of an array system with
reduced number of receiving channels was implemented and
experimentally verified. Consider a receiver which has two

Fig. 1. Antenna array with dual channel switched receiver system

receiving channels where one element of an array is associated
to the first channel and all other elements are connected to the
second receiving channel by a switch as shown in Fig. 1. The
acquired raw data are further processed to calibrate the system
or to estimate the DOA of a signal.

This paper shows the adaptation of three different cali-
bration processes, namely element pattern calibration, mutual
coupling calibration and receiver phase calibration for an array
antenna with a dual channel switched receiver system. The
system is calibrated from the measurement data, which was
acquired from a source with a known DOA. The chosen
approaches are compared in terms of their performance and
flexibility. Analysis revealed that element pattern calibration
provided the best performance and mutual coupling method
provided the highest flexibility.

This paper is organized as follows: Section II deals with the
mathematical model of the investigated array antenna and the
problems involved in calibration. Section III explains the pre-
processing stage of a dual channel switched receiver system,
creation and application of calibration methods. Section IV
shows analysis of experimental results. Section V concludes
the study.

In this article, (·)∗ represents the conjugate complex, (·)H
represents the conjugate complex transpose. The notations
.* and ./ denote element-wise multiplication and division,
respectively.
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II. ARRAY MODEL AND PROBLEM FORMULATION

An array of radius r with M elements is considered whose
individual array elements are located at rm, m = 1, ...,M .
The array is used to estimate the azimuth θ and elevation φ
of a far-field source with a specific wavelength λ (Fig. 2).

The antenna array collects a batch of K data samples per
measurement and the k-th data sample yk ∈ CM×1 reads

yk = a(θ, φ) sk + wk , (1)

where sk denotes the source signal and wk indicates the
receiver noise, k = 1, ...,K. The array steering vector

a(θ, φ) = diag [g(θ, φ)] a0(θ, φ) (2)

expresses the complex response of the antenna array with
respect to a signal impinging from a direction (θ, φ). The
mutual coupling phenomenon and dissimilarities in mechan-
ical, electrical and directivity pattern between the elements
constitute the non-ideal behaviour of the array elements, which
is described by g(θ, φ). The m-th element of the ideal steering
vector a0(θ, φ) can be expressed as

a0,m(θ, φ) = exp
(
j 2π
λ eT(θ, φ) rm

)
, (3)

where e(θ, φ) indicates the DOA unit vector.
In this paper, a dual channel switched receiver system is

used to acquire the measurements (Fig. 1), i.e. the data from
M − 1 elements are measured in a switched format. The data
samples of the dual channel switched receiver system are given
by

zk = Πk yk , (4)

where Πk ∈ {0, 1}2×M denotes the switch matrix and it is
constructed as

Πk =

[
1 0 · · · 0
0 πk,1 · · · πk,M−1

]
(5)

with

πk,i =

{
1, if iK ′ < k ≤ (i+ 1)K ′

0, otherwise

Fig. 2. Element positions of a UCA

for the i-th switch interval, i = 1, ...,M − 1 [13]. This way,
K ′ = K

M−1 samples are collected per channel for each switch
interval. All measurements can be comprised in the matrix
Z = [z1 · · · zK ] ∈ C2×K , which can be expressed in the
following form

Z =

[
z1,1 · · · z1,M−1

z2,1 · · · z2,M−1

]
, (6)

where zp,i contains K ′ samples measured from the p-th chan-
nel during the i-th switch interval, p = 1, 2, i = 1, ...,M − 1.

In order to determine the non-ideal behaviour of the system
given by g(θ, φ), R measurements with a known DOA (θr, φr)
are performed, which are denoted by Zr, r = 1, ..., R.

Then, the calibration problem can be stated as follows: Cal-
culate a calibration term that considers the non-ideal behaviour
of the system based on the measurement set Zr, r = 1, ..., R
of the dual channel switched receiver system. The receiver
noise in the measurement is assumed to be an Additive White
Gaussian Noise (AWGN) with zero mean and definite standard
deviation which is spatially and temporally uncorellated.

III. CALIBRATION METHODS

A. Data Preprocessing
In this section, preprocessing of the measurement Z, genera-

tion and implementation of the various calibration methods are
explained in detail. The amplitude and the phase differences
between the channels are more significant than the absolute
amplitude and phase of each channel [14]. Therefore the
relative phase and amplitude of Channel 2 are calculated by
normalizing it with respect to Channel 1. The normalization
of (6) leads to

Z̃ =

[
1 · · · 1

z2,1./z1,1 · · · z2,M−1./z1,M−1

]
. (7)

On rearranging (7) based on antenna elements, we get

˜̃Z =


1
˜̃z2

...
˜̃zM

 =


1

z2,1./z1,1

...
z2,M−1./z1,M−1

 (8)

with ˜̃zm = (bm,1 e jϕm,1 , . . . , bm,K′ e jϕm,K′ )T . The mean
measurement vector z̄ = (b̄1 e jϕ̄1 , ..., b̄M e jϕ̄M )T can be
calculated by

b̄m =
1

K ′

K′∑
k=1

bm,k ,

ϕ̄m = arctan

 K′∑
k=1

sin(ϕm,k),
K′∑
k=1

cos(ϕm,k)

 .

For R reference DOAs the full measurement set is

Z̄ = [z̄1 · · · z̄R] .

This measurement set corresponds to the following set of ideal
array steering vectors (3)

A0 = [a0(θ1, φ1) · · ·a0(θR, φR)] .
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B. Determination of Array Calibration
Calibration is performed to diminish the anomalies in a

system and to estimate a plausible DOA with a higher level
of precision. It is achieved by comparing the measurement Z̄
with a theoretical model A0. In this section, three diverse
systematic calibration approaches are explained which are
based on an assumption that,

Z̄ ≈ C(θ, φ)A0, (9)

where C(θ, φ) represents in general a calibration matrix.
The proposed methods are classified based on the directional
dependency of its application. The calibration methods are
ordered in a decreasing order of complexity and quality:
1. Element pattern calibration,
2. Mutual coupling calibration and
3. Receiver phase calibration.

1) Element pattern calibration: This method identifies the
phase difference between the actual measurement Z̄ and the
ideal array steering matrix A0 and it is dependent on the
direction of the signal. Let us consider

∆ = Z̄ .∗A∗0 = [∆(θ1, φ1) · · ·∆(θR, φR)] (10)

that contains the element pattern for all considered reference
measurements. Then, the calibration matrix for a specific DOA
(θ, φ) can be calculated by performing an interpolation of the
corresponding element patterns ∆(θr, φr), r = 1, ..., R

C1(θ, φ) = diag [∆(θ, φ)] . (11)

The quality of the calibration matrix is directly proportional
to the number of measurements R. It is evident that the array
calibration is more precise for the considered reference DOAs.
If the specific DOA to be estimated lies between or outside the
region of the calibrated DOAs, then the required calibration
vector ∆(θ, φ) is interpolated from ∆.

2) Mutual coupling calibration: Mutual coupling is an
inevitable phenomenon of an array, which is due to coupling
of signals between elements in transmission and in reception
modes. Minimizing the mutual coupling error along with gain-
phase distortions can be accomplished by considering the
actual measurement for calibration.

C2 = Z̄AH
0 (A0A

H
0 )−1 (12)

The calibration matrix is generated by taking R measurements
into account. C2 can be applied to the DOAs which were not
used to calculate it.

3) Receiver phase calibration: This approach is formed in
order to compensate the existing phase distortion. Let ∆m,r

denotes an element of (10), which is a complex number with
definite amplitude |∆m,r| and phase αm,r.

δm =
1

R

R∑
r=1

|∆m,r|

for m = 1, ...,M , δ = (δ1, δ2, . . . , δM )T .

ᾱm = arctan

(
R∑
r=1

sin(αm,r),
R∑
r=1

cos(αm,r)

)

for m = 1, ...,M , ᾱ = (e jα1 , e jα2 , . . . , e jαM )T . The receiver
phase calibration matrix is calculated by

C3 = diag(δ. ∗ ᾱ) (13)

Like the mutual coupling method, the receiver phase cali-
bration method can be applied to all DOAs. However this
approach corrects only the phase imperfections but not the
erros induced in the measurement due to mutual coupling
effect.

When R = 1, the receiver phase calibration is executed
based on single DOA and it is denoted by C4. This indicates
the low quality and low complexity of the method. Though
the array is calibrated only for one DOA, it is implemented
for the complete array. Despite of its low complexity, this
method does not demand extensive measurements which in
turn reduces the measurement time and difficulty in creating a
measurement setup. Often a measurement at φ1 = 0◦ is used
to measure a planar array to perfectly calibrate the sensor in
zenith direction.

C. Application of Array Calibration

Let C denote a calibration matrix in a generic manner.
Consider a measurement zk given by (4), the calibration
matrices can be applied as follows (refer (9)).

acal(θ, φ) = C a0(θ, φ), (14)

where acal(θ, φ) indicates the calibrated array steering vector
for a signal with specific DOA (θ, φ) and acal(θ, φ) is further
processed to estimate the DOA. The proposed calibration
methods are applicable for azimuth θ and elevation φ esti-
mation.

The covariance matrix R of the measurement Z collected
by an array of M elements is calculated as

R =
1

K

K∑
k=1

zkz
H
k .

As an example, a conventional BF algorithm was implemented
to perform DF because it is optimal for the estimation of a
single source.

(θ̂, φ̂)BF = arg max
θ,φ

aHcal(θ, φ) R acal(θ, φ)

aHcal(θ, φ) acal(θ, φ)
. (15)

The generated calibration matrices can be applied to other DF
algorithms.

IV. EXPERIMENTAL RESULTS

A robust and compact Uniform Circular Array (UCA)
with M = 9 omni-directional antenna elements along with
a dual channel switched receiver system are designed to
estimate the DOA of a signal for Unmanned Ground Vehicle
(UGV) application. Especically in a scenario where the sensor
platform and source are mobile, the accuracy of the DOA
estimation is a critical aspect. Therefore an extensive set of
measurements will be immensely beneficial to calibrate the
array as precisely as possible. The UCA was mounted on a
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controllable rotating platform and a narrowband signal is mea-
sured. Therefore measurements were performed for every 1◦

of angular displacement which provides an intensive data set
with R = 360 measurements. In this paper, only the azimuth
θ is considered as a parameter of estimation. Therefore the
signals were measured by positioning the transmitting antenna
and the UCA at the same altitude, with constant elevation
φ = 90◦. Thereby we eliminate φ as a parameter in the
calibration and in the DF stage. For a closely packed antenna
elements and a signal arriving from a far-field, the amplitude
of the received signal does not possess useful directional
information. Hence only the phase calibration is performed
in the suggested methods. Although a UCA is used in this
experiment to perform measurements, the calibration methods
can be applied to different array geometries.

A. Algorithm Generation and Implementation

The algorithms shown in Fig. 3 are constructed with high
modularity to generate and implement the calibration matrices.
The quality and the complexity of a calibration matrix depend
on the angular step size (S). For example, if the angular step
size (S) equals 2◦, then the total number of considered angular
directions for the calibration equals R = 180. The created
calibration matrices are tested in a simulated environment. The
Signal-Noise-Ratio (SNR) and LOOP are the parameters to
define the Monte-Carlo simulation, where LOOP denotes the
number of times the DF process is executed for a particular
angle (idx).

Fig. 3. Generation and implementation of the calibration methods

Fig. 4. Comparison of the calibration methods based on the DOA result

B. Simulation Result Analysis

Fig. 4 shows the distribution of the error δθ = (θ̂ − θ0),
where θ̂ and θ0 represent the estimated DOA and ideal
DOA, respectively. The calibration matrices were created by
considering 360 measurements and their influence on the
performance of the DOA estimation in a simulated scenario
is shown in Fig. 4. It is clearly seen that the error is larger in
an uncalibrated case than in all other calibrated cases. Among
the calibration methods, receiver phase calibration method
based on R = 1 DOA has the least complexity and it provides
the worst compensation of the induced and existing errors in
the UCA. In element pattern calibration, the transformation
of the inherent steering vector for the calibrated angles yields
the most accurate DOA estimation (in comparison to the other
methods). Mutual coupling method has performed marginally
better than receiver phase calibration method, because it did
include the gain-phase distortion and the mutual coupling
effect by considering the entire measurement.

Fig. 5. Comparison of RMSE of θ̂ based on simulation
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Fig. 6. Comparison of RMSE of θ̂ based on real measurement

Different angular step sizes provide different numbers of
measurements available for the creation of calibration matrices
(refer Section IV-A). These calibration matrices were tested in
a simulated environment and the obtained results are displayed
in Fig. 5. It is evident that the mutual coupling method,
receiver phase calibration and receiver phase calibration based
on 1 DOA possess a higher flexibilty by providing a similar
RMSE of θ̂ for different step sizes. Element pattern calibration
demonstrates a significant increase in RMSE of θ̂ with the
growth of angular step size. This obviously elucidates that
element pattern calibration method functions better only in
the incident directions which were used to calibrate the UCA
and the quality of element pattern calibration depends on R.
Inspite of this behaviour, within the investigated angular step
size, element pattern calibration has exhibited an enhanced
behaviour in comparison to other calibration methods.

The created calibration matrices were implemented on the
actual measurements which were used to generate the calibra-
tion matrices and the result is shown in Fig. 6. This approach
reveals the versatility of the calibration methods. Through this
analysis, it is proven that the mutual coupling method perfroms
better compared to the receiver phase calibration approach and
thus verifies the result shown in Fig. 5.

V. CONCLUSION

Calibration of a UCA with a dual channel switched
receiver system is presented in this paper. The three selected
calibration approaches are Element pattern calibration, mutual
coupling calibration and receiver phase calibration. The
calibration matrices are generated from a real measurement
and they are tested on a simulated measurement to estimate
the DOA. The presented analysis shows that with an angular
step size of 1◦, the element pattern calibration delivers
the best result. Mutual coupling method has performed
marginally better than receiver phase calibration. Element
pattern calibration has the least flexibilty within the tested
angular step size region, while other methods yield a stable
performance even with smaller number of measurements used

to create calibration matrices. These calibration methods have
been sucessfully tested on the measurement.
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