
An Adaptive Sampling Technique for Graph
Diffusion LMS Algorithm

Daniel G. Tiglea, Renato Candido, and Magno T. M. Silva
Escola Politécnica, University of São Paulo, Brazil

{dtiglea, renatocan, magno}@lps.usp.br

Abstract—Graph signal processing has attracted attention in
the signal processing community, since it is an effective tool
to deal with great quantities of interrelated data. Recently,
a diffusion algorithm for adaptively learning from streaming
graphs signals was proposed. However, it suffers from high
computational cost since all nodes in the graph are sampled even
in steady state. In this paper, we propose an adaptive sampling
method for this solution that allows a reduction in computational
cost in steady state, while maintaining convergence rate and
presenting a slightly better steady-state performance. We also
present an analysis to give insights about proper choices for its
adaptation parameters.

Index Terms—Graph signal processing, sampling on graphs,
diffusion strategies, graph filtering, convex combination.

I. INTRODUCTION

Over the last years, graph signal processing (GSP) has been
a topic of intense research since the observed data can be
modelled as graph signals in many network-structured appli-
cations, such as sensor networks, smart grids, transportation
networks, communication networks, among others [1]–[8].
These applications can be modelled by a graph with a large
number of connected nodes and therefore, many techniques for
graph signal sampling have been proposed (see, e.g., [6] and its
references). These sampling techniques use information from
less nodes to make inferences about the whole graph signal,
oftentimes by means of random sampling mechanisms [6].

Recently, [7]–[9] took advantages of diffusion strate-
gies [10] to propose new tools for adaptive GSP, which led to
distributed solutions based on the least-mean-squares (LMS)
algorithm. The distributed algorithm of [8] focuses on the
prediction of the graph signals and uses an efficient distributed
graph sampling strategy based on a probabilistic approach. On
the other hand, [9] proposes a diffusion LMS algorithm for the
estimation of the coefficients of graph filters from streaming
signals. However, in its current form, the distributed algorithm
of [9] requires the use of all of nodes of the graph in the
processing. The question that arises is whether that is really
necessary, since sampling reduces the computational/memory
burden, which is crucial in situations where the measurement
and processing of data in every node is very costly.

In this work, we propose a sampling mechanism for the
graph diffusion algorithm of [9] that changes adaptively the
amount of sampled nodes in the graph based on mean-squared

This work was supported by FAPESP under Grant 2017/20378-9 and by
CNPq under Grants 132586/2018-5 and 304715/2017-4.

error (MSE) in the neighborhood of each node. Thus, the
number of sampled nodes decreases when the MSE is low,
allowing for fast convergence in the transient and a significant
reduction in the number of sampled nodes in the steady state.
We also observed a slightly better steady-state performance
when compared to the case in which all nodes are sampled.

The paper is organized as follows. In Section II, we formu-
late the GSP problem and revisit the distributed algorithm of
[9]. In Section III, we propose an adaptive sampling algorithm
and in Section IV, we present an analysis to give insights about
proper choices for its adaptation parameters. Simulation results
are shown in Section V. Finally, Section VI closes the paper
with the conclusions.
Notation. Normal font letters denote scalars, boldface low-
ercase letters denote vectors, and boldface uppercase letters
denote matrices. The k-th entry of vector x is denoted by rxsk,
and if X is a set, |X | denotes its cardinality. Furthermore, p¨qT

denotes transposition, Et¨u the mathematical expectation, } ¨ }
the Euclidean norm, colt¨u the stacking of its arguments to
form a column vector, and diagt¨u a diagonal matrix with its
arguments being the diagonal elements.

II. DIFFUSION GRAPH ADAPTIVE FILTERING

Let G “ pV, Eq be a graph consisting of a set of nodes
V with labels k “ 1, 2, ¨ ¨ ¨ , V and a set of edges E . We
represent a signal defined over G by the column vector
xpnq“rx1pnq, ¨ ¨ ¨ , xV pnqs

T P RV , where xkpnq is the value
of the signal at node k at time instant n [1]. Furthermore, let
A be a V ˆ V matrix that denotes the graph shift operator.
Possible choices for A include the adjacency matrix [1] and
the graph Laplacian matrix [2]. In particular, the pi, jq-th
entry of the adjacency matrix is different from zero only if
there is an edge linking nodes i and j, in which case it is
equal to the weight of this edge. We then assume that the
vector xpnq is processed to generate the filtered graph vector
defined as [9], [11]

ypnq “
M´1
ÿ

`“0

ho
`A

`xpn´ `q ` vpnq, (1)

where ho
0, ¨ ¨ ¨ , h

o
M 1́ are the M filter coefficients, vpnq “

rv1pnq, ¨ ¨ ¨ , vV pnqs
T P RV is an independent and identi-

cally distributed (i.i.d.) zero-mean noise vector assumed in-
dependent of any other signal and with covariance matrix
Rv“diagtσ2

vk
uVk“1.

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

The length-M column vector h that estimates ho “

rho
0, ¨ ¨ ¨ , h

o
M 1́s

T can be obtained by minimizing [9]

Jphq“
V
ÿ

k“1

Jkphq, with JkphqfiEt|ykpnq´z
T
kpnqh|

2u, (2)

where ykpnq “ rypnqsk and the vector

zkpnq fi coltrA0xpnqsk, ¨ ¨ ¨ , rA
M´1xpn´M`1qsku (3)

aggregates the k-th entries of all tA`xpn ´ `quM´1
`“0 and

can be computed locally as pointed out in [9]. Following a
diffusion adaptation strategy to minimize (2), [9] proposed
two variations of a diffusion LMS algorithm: one based on the
adapt-then-combine (ATC) strategy and another based on the
combine-then-adapt (CTA) one. In this paper, we only consider
the ATC strategy since the results can be extended straightfor-
wardly to the CTA one. Furthermore, the ATC diffusion LMS
algorithm of [9] is extended here to a normalized version:

$

’

&

’

%

ψkpn` 1q“hkpnq`µkpnqzkpnqekpnq

hkpn` 1q“
ř

jPNk
wkjψjpn` 1q

, (4)

where
ekpnq “ ykpnq ´ zT

kpnqhkpnq, (5)

is the estimation error at node k, the M -length column vectors
ψkpnq and hkpnq represent respectively local and combined
estimates of ho at node k, Nk denotes the neighborhood
of node k (including k itself), and twk,ju are non-negative
weights that satisfy

wkj ě 0,
ÿ

jPNk

wkj “ 1, and wkj “ 0 for j R Nk.

We also consider the normalized local step-size

µkpnq “ rµk{rδ ` γkpnqs, (6)

where 0 ărµkă2, γkpnq “ λγkpn´ 1q` p1´λq}zkpnq}
2 is a

low-pass filtered estimate for }zkpnq}2 with forgetting factor
0 ! λ ă 1 and initialization γkp´1q “ 0, and δ is a small
positive constant used to avoid large step sizes when γkpnq
becomes small. The choice of step size in this normalization
version does not depend on the power of the input signal,
which is particularly important for nonstationary signals [12].

III. THE PROPOSED SAMPLING ALGORITHM

At each iteration, the ATC diffusion algorithm (4) estimates
the parameter vector ho from the data tykpnq, zkpnqu. In our
sampling proposal, we define the variable sskpnq that assumes
the values zero or one to decide if ekpnq should be computed
at each iteration or not. Thus, we recast the adaptation step
in (4) as

ψkpn` 1q “ hkpnq ` sskpnqµkpnqzkpnqekpnq. (7)

If sskpnq“1, ekpnq is computed as (5) and (7) coincides with
the adaptation step of (4). On the other hand, if sskpnq “ 0,
ekpnq is not computed, ykpnq is not sampled, zkpnq, µkpnq,
and γkpnq are not computed, and ψkpn`1q“hkpnq.

To obtain the binary variable sskpnq P t0, 1u and select
the nodes that should be sampled, we consider the variable
skpnq P r0, 1s such that sskpnq “ 0 for skpnq ă 0.5 and
sskpnq “ 1 otherwise. We then minimize the following cost
function with respect to skpnq:

Js,kpnq “ rskpnqsβskpnq`
“

1´skpnq
‰ 1

|Nk|

ÿ

iPNk

e2
i pnq, (8)

where β ą 0 is a parameter introduced to control how
much the sampling of the nodes is penalized. This cost
function is a convex combination in skpnq of the `1 norm
}skpnq}1 “ skpnq, weighted by β, and the MSE in the neigh-
borhood of node k. Thus, when the MSE is high (e.g., during
transient), Js,kpnq is minimized by making skpnq close to
one so that the second term in (8) becomes small, which
enforces node k to be sampled. On the other hand, when
ř

iPNk
e2
i pnq is small in comparison to βskpnq, the cost

function is minimized by making skpnq closer to zero, which
means that node k should not be sampled. If β is chosen
properly, this should happen in steady state. Since the expected
value of

ř

iPNk
e2
i pnq in steady state may change from one

application to another, β should be chosen accordingly.
Inspired by convex combination of adaptive filters (see, e.g.,

[13], [14] and their references), rather than directly adjusting
skpnq, we update an auxiliary parameter αkpnq which is
deterministically related to skpnq via [14]

skpnq “ φαk
pnq fi

sgmrαkpnqs ´ sgmr´α`s

sgmrα`s ´ sgmr´α`s
, (9)

where sgmrxs “ p1 ` e´xq´1 is the sigmoidal function, and
α` is the positive maximum value that αkpnq can assume. We
should notice that skpnq attains values 1 and 0 for αkpnq “ α`

and αkpnq “ ´α`, respectively. A common value adopted in
the literature is α` “ 4.

By taking the derivative of (8) with respect to αkpnq, we
obtain the following stochastic gradient descendent rule:

αkpǹ 1q“αkpnq̀ µsφ
1
αk
pnq

»

–

1

|Nk|

ÿ

iPNk

e2
i pnq´βskpnq

fi

fl , (10)

where µs ą 0 is a step size and

φ1αk
pnqfi

dskpnq

dαkpnq
“

sgmrαkpnqst1´ sgmrαkpnqsu

sgmrα`s ´ sgmr´α`s
. (11)

The form of the algorithm (10) does not allow to use it for
sampling since the error signals in the neighborhood of node
k (including k itself) must be computed to decide if node
k should be sampled or not, which is clearly contradictory.
To address this issue, we consider a heuristic modification by
replacing eipnq in (10) by εipnq, which in turn denotes the
latest measurement of eipnq that we have access to. However,
this modification may lead the algorithm to stop sampling all
nodes permanently, which deteriorates its tracking capability.
This can be avoided by replacing βskpnq in (10) by βsskpnq, as

2019 27th European Signal Processing Conference (EUSIPCO)

explained in the sequel. Incorporating these changes into (10),
we arrive at

αkpn`1q“αkpnq`µsφ
1
αk
pnq

»

–

1

|Nk|

ÿ

iPNk

ε2
i pnq´βsskpnq

fi

fl. (12)

This algorithm is named as adaptive sampling diffusion
LMS (AS-dLMS). We should notice that µsφ1αk

pnq, the sum
of ε2

i pnq, and βssk in (12) are always non-negative. Thus,
supposing that in a given iteration node k is sampled (ssk “ 1)
and that αk “ α`, the algorithm (7) updates ψk to minimize
the graph MSE. After a number of iterations, the MSE in the
neighborhood of node k in (12) (first term inside the brackets)
becomes smaller than βssk “ β. Therefore, in a stationary
environment, the correction term becomes negative, which
enforces αk to decrease until it also becomes negative. When
αk ă 0, ssk “ 0 and node k is no longer sampled. In this case,
since βssk “ 0, αk increases, becoming positive again after a
number of iterations and node k is sampled again. Thus, the
algorithm does not stop sampling any node permanently, which
is essential to detect changes in the environment. Furthermore,
the greater the MSE in the neighborhood of node k, the sooner
the sampling restarts.

This mechanism leads to a reduction of sampled nodes in
steady state, decreasing the computational cost. If β is chosen
appropriately, this reduction does not occur in the transient and
AS-dLMS maintains the same convergence rate of the ATC
algorithm with no sampling mechanism. However, we should
mention that there is a slight increase of the cost during the
transient, as shown in the simulations. Finally, different from
the ATC algorithm with no sampling mechanism, AS-dLMS
requires each sampled node to transmit e2

i pnq to its neighbors.
This information can be sent bundled with the local estimates
ψi so that the number of transmissions remains unaltered.

IV. CHOOSING THE PARAMETERS β AND µs

The good behavior of AS-dLMS depends on a proper choice
of β and µs. In order to choose these parameters in a suitable
manner, we analyze αkpnq while node k is sampled. In this
case, we can replace ε2

i pnq and βs̄kpnq in (12) by e2
i pnq and

β, respectively. Making these replacements, subtracting αkpnq
from both sides, and taking expectations, we get

Et∆αkpnqu“µsE

$

&

%

φ1αk
pnq

»

–

1

|Nk|

ÿ

iPNk

e2
i pnq´β

fi

fl

,

.

-

, (13)

where ∆αkpnq fi αkpǹ 1q́ αkpnq. To make the analysis more
tractable, φ1αk

pnq and the term between brackets in (13) are as-
sumed statistically independent. Although this assumption may
seem unrealistic, simulation results suggest it is a reasonable
approximation. Thus, Equation (13) can be recast as

Et∆αkpnqu“µsEtφ
1
αk
pnqu

»

–

1

|Nk|

ÿ

iPNk

Ete2
i pnqu´β

fi

fl. (14)

In order to stop sampling node k, αk should decrease along
the iterations until it becomes negative. Since µsEtφ

1
αk
pnqu

is always positive, to enforce ∆αkpnq to be negative in the
mean, β must satisfy

β ą
1

|Nk|

ÿ

iPNk

Ete2
i pnqu. (15)

Assuming that the order of the adaptive filter is sufficient and
that µ̃k, k“1, 2, ¨ ¨ ¨, V, are chosen properly so that the gradient
noise can be disregarded, it is reasonable to assume in steady
state that Ete2

i pnqu « σ2
vi , which leads to

1

|Nk|

ÿ

iPNk

Ete2
i pnqu ď σ2

max fi max
iPV

σ2
vi . (16)

Thus, the condition
β ą σ2

max (17)

is sufficient to ensure that in the mean every node ceases to
be sampled at some iteration in steady state. The iteration
in which this occurs is different for each node since it
depends on the neighborhood MSE. Furthermore, as explained
in Section III, the absence of sampling of the nodes is not
permanent. We should notice that (17) does not guarantee good
performance in terms of MSE. In particular, high values of β
can lead to Et∆αkpnqu ă 0 during transient, thus affecting
the convergence rate and tracking capability of AS-dLMS.
Simulation results suggest that if β is chosen in the interval
sσ2

max, 10σ2
maxs, the good behavior of AS-dLMS is preserved.

By choosing β properly, Etαkpnqu « α` during transient
and Et∆αkpnqu ď 0 when sskpnq “ 1 in steady state. In this
case, we can find a proper value for µs by studying how fast
we arrive at Etαkpnqu ď 0. Using (14) and (16), we get

Et∆αkpnqu ď µsEtφ
1
αk
pnqupσ2

max ´ βq. (18)

To simplify (18), we approximate φ1αk
pnq in the interval r0, α`s

by a straight line that crosses the points p0, φ10q and pα`, φ1α`q,
in which φ10 and φ1α` denote the values of φ1αk

evaluated at
αk “ 0 and αk “ α`, respectively. This approximation is
given by

φ1αk
pnq « ζαkpnq ` φ

1
0, (19)

where ζ “ rφ1α` ´ φ10s{α
`. For α` “ 4, this is a good

approximation since its mean-squared error in r0, α`s is of
the order of 5ˆ 10´4. Replacing (19) in (18), we obtain

Etαkpn` 1qu Æ Etαkpnqup1` ζθq ` φ
1
0θ, (20)

where θ “ µspσ
2
max ´ βq. Since we assumed Etαkpnqu«α

`

during transient, we denote the first iteration of the steady
state by n0 and define n0 `∆n fi n ` 1. Then, considering
Etαkpn0qu«α

` in (20) and applying it recursively, we obtain

Etαkpn0`∆nqu Æ α`p1`ζθq∆n`φ10θ
∆n´1
ÿ

η“0

p1`ζθqη. (21)

After some algebraic manipulations, we arrive at

Etαkpn0`∆nqu Æ rpζα` ` φ10qp1` ζθq
∆n ´ φ10s{ζ. (22)

Since we are interested in studying how fast we arrive
at Etαkpnquď0 depending on our choice of µs, we set

2019 27th European Signal Processing Conference (EUSIPCO)

Etαkpn0`∆nqu to zero in (22). Thus, for a desired value
of ∆n, we should choose

µs Ç
α`

pβ ´ σ2
maxqpφ

1
0 ´ φ

1
α`q

»

—

–

˜

φ1o
φ1
α`

¸
1

∆n

´ 1

fi

ffi

fl

. (23)

From (23), we can observe that the smaller ∆n, the larger the
value of µs. We should notice that the larger β, the worse
the approximation (23), since larger values of β may lead
to Etαkpn0qu significantly lower than α`, contradicting our
assumption. However, for β P sσ2

max, 10σ2
maxs, (23) agrees with

the simulation results and enables a more suitable choice for
µs, as shown next.

V. SIMULATION RESULTS

In this section, we present simulation results obtained over
an average of 100 realizations. For the sake of better visual-
ization, we also filtered the curves by a moving-average filter
with 64 coefficients. In each realization, a random graph with
V “ 20 nodes is generated. Each node is assigned X and
Y coordinates following uniform distributions in the interval
r´1, 1s. If the Euclidean distance between two nodes is less
than or equal to 0.9, they are considered connected and an
edge with unitary weight is created. An example is shown
in Fig. 1(a). Graphs with isolated nodes are discarded and
we consider the graph adjacency matrix as the shift operator.
Furthermore, we assume that xkpnq and vkpnq are generated
from i.i.d. Gaussian random processes with variances σ2

xk
“1

and σ2
vk

as shown in Fig. 1(b) for k “ 1, ¨ ¨ ¨ , V . To simulate
an abrupt change in the optimal system, we consider

hopnq “

#

r1.00 0.50 0.25sT, if n ď N{2,

r0.25 0.50 1.00sT, otherwise
,

where N is the number of iterations. The combination weights
are given by wkj “ 1{|Nk| if j P Nk and wkj “ 0 otherwise.
A different value of µ̃k is considered for each node as shown
in Fig. 1(c), and we set δ“ 10´5 and λ“ 0.9 in all simula-
tions. As a performance indicator, we adopt the mean-square
deviation (MSD) given by 1

V

řV
k“1 Et‖hopnq ´ hkpnq‖2

u.

(a)

0

5

10

σ
2 v
k

(b)

×10−3

1 5 10 15 20

Node k

0

0.5

1

µ
k

(c)

Fig. 1: (a) An example of a graph generated in one realization using
GSPBOX [15]. (b) σ2

vk and (c) µ̃k across the graph.

Firstly, we compare the behavior of the AS-dLMS algorithm
with the diffusion LMS algorithm that uses a random sampling

technique, where Vs nodes are randomly sampled at every
iteration [8]. For each algorithm, the MSD curves, the average
amount of sampled nodes, and the number of multiplications
are shown along the iterations in Figs. 2(a), 2(b), and 2(c),
respectively. We can observe that the more nodes are sampled,
the faster the convergence. AS-dLMS was able to detect the
abrupt change in the optimal system since the sampling of
the nodes does not cease permanently. Furthermore, all nodes
were sampled during the transients, which led it to converge as
fast as the diffusion LMS algorithm with all sampled nodes.
Interestingly, when it achieves the steady state, only two to
three nodes are sampled in the mean and there is a slight
reduction in the MSD. This reduction also occurs when the
random sampling technique is used at the expense of slower
convergence. Furthermore, the lower the number of sampled
nodes, the lower the achieved MSD. We may interpret this
result as follows: during the transient, measuring yk in each
node k provides useful information to improve the estimates of
the algorithm, but during the steady state it does not lead to
further improvement. Moreover, the local estimate ψk from
the observed data yk tends to be noisier than hk obtained
by taking the average of the estimates in its neighborhood.
Finally, we can also observe that during the transients, the
computational cost of AS-dLMS is slightly higher than that
of dLMS algorithm with all sampled nodes, which is widely
compensated by the cost savings in steady state.

0 5 10 15

iterations (×104)

−60

−40

−20

0

20

(a
)

M
S

D
(d

B
)

Vs=20

Vs=15

Vs=10

Vs=5

AS-dLMS

-55

-60

0
5

10
15
20

(b
)
V
s
(n

)

0 5 10 15

iterations (×104)

0.75

1

1.25

(c
)
⊗
×

10
3

Fig. 2: Simulation results obtained with the diffusion LMS al-
gorithm of [9] with a random sampling technique considering dif-
ferent amounts of sampled nodes and with AS-dLMS (β “ 0.03,
µs “ 0.22): (a) MSD curves, (b) Amount of sampled nodes per
iteration, and (c) Number of multiplications per iteration.

In Fig. 3, we present the MSD curves and amount of sam-
pled nodes along the iterations for AS-dLMS, by considering
different values of β and a fixed step size (µs “ 0.22). In
Figs. 3(a) and 3(c), we consider the same scenario of Fig. 2,
whereas in Figs. 3(b) and 3(d) the noise power was set to
σ2
vk
“σ2

max“0.01 for k“1, ¨ ¨ ¨ , V . In the first case, we note
that (17) provides a conservative estimate for the minimum
value of β. In the second case, β“σ2

max maintains the sam-
pling of all nodes, whereas βąσ2

max ensures that some nodes
cease to be sampled. Furthermore, we notice that the greater
β, the lower the amount of sampled nodes in steady state, and
the faster the nodes cease to be sampled, which is beneficial in
terms of computational cost. However, high values of β may
also compromise the performance of the algorithm, since in
both cases β“1 led to low convergence rates.

2019 27th European Signal Processing Conference (EUSIPCO)

20

0

-20

-40

-60

(a
)

M
S

D
(d

B
)

β = 0.01

β = 0.02

β = 0.03

β = 1

0 5 10 15

iterations (×104)

0
5

10
15
20

(c
)
V
s
(n

)
20

0

-20

-40

-60

(b
)

M
S

D
(d

B
)

0 5 10 15

iterations (×104)

0
5

10
15
20

(d
)
V
s
(n

)

Fig. 3: Simulation results obtained with AS-dLMS (µs “ 0.22 and
different values of β): (a) MSD curves and (c) amount of sampled
nodes per iteration for σ2

vk as in Figure 1(b); (b) and (d) Results for
fixed σ2

vk “ 0.01 for all k.

In Fig. 4, we use (23) to set values of µs for different
values of β with ∆n“104. Besides the MSD and the amount
of sampled nodes along the iterations, Fig. 4(c) also shows
the graph MSE given by 1

V

řV
k“1 Ete2

kpnqu. We can observe
from Figs. 4(b) and 4(c) that, before the abrupt change in
the optimal system, the number of sampled nodes begins to
fall approximately at the same time for all values of β and
that the number of iterations between the beginning of the
MSE steady-state regime and the end of this process is fairly
close to ∆n, which supports the validity of the approximation
(23). In this regard, it should be noted that the start of steady-
state regime in terms of MSE and MSD does not necessarily
coincide, as can be seen by comparing Figs 4(a) and 4(c),
which is an argument in favor of choosing high values for
∆n. Comparing Figs. 3(a) and 4(a), we notice that choosing
µs “ 0.0044 for β “ 1 led to a better performance in terms of
MSD before the abrupt change. However, after this change, the
algorithm stops sampling the nodes while MSD is still high,
leading again to a slow convergence. This occurs since we have
Etαkpnqu ! α` right before the change, and the high value
for β prevents the algorithm from sampling enough nodes to
improve its estimate again. This does not occur for β ď 0.03
since the algorithm resumes the sampling of every node in the
graph and the steady state of MSD is quickly achieved again.
These results indicate that, even with a proper step size µs,
high values of β (e.g., β ą 10σ2

max) should be avoided as they
can affect the performance of AS-dLMS.

VI. CONCLUSIONS

In this paper, we proposed modifications to the graph
distributed LMS algorithm of [9] in order to incorporate a
sampling technique. The proposed adaptive sampling mecha-
nism uses the information from more nodes when the error
in the network is high and less nodes otherwise. From the
simulations, AS-dLMS maintains the convergence rate of the
original algorithm of [9] during transient while displaying a
lower computational cost in steady state. Furthermore, it was
shown experimentally that the adoption of sampling techniques

0.0 2.5 5.0 7.5 10.0

iterations (×104)

−60

−40

−20

0

20

(a
)

M
S

D
(d

B
)

β=0.015

β=0.02

β=0.03

β=1

0
5

10
15
20

(b
)
V
s
(n

)

0.0 2.5 5.0 7.5 10.0

iterations (×104)

−25

0

(c
)

M
S

E
(d

B
)

∆n↔

Fig. 4: Simulation results obtained with AS-dLMS (different values
of β and µs adjusted by (23) for each case): (a) MSD curves, (b)
Amount of sampled nodes per iteration, and (c) MSE Curves.

may lead to a slight reduction in steady-state MSD. We have
also obtained theoretical results to help the choice of the
adaptation parameters β and µs, which were also supported
by the simulation results. At the same time, it was shown that
poor choices of β and µs may compromise the convergence
rate and tracking capabilities of the algorithm. For future work,
we intend to obtain a performance analysis of AS-dLMS and
test it in other scenarios using real-world data.

REFERENCES

[1] A. Sandryhaila and J.M.F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, pp. 1644–1656, Apr. 2013.

[2] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, pp. 83–98, May 2013.

[3] S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, pp. 6510–6523, Dec. 2015.

[4] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for
bandlimited graph signals using graph spectral proxies,” IEEE Trans.
Signal Process., vol. 64, pp. 3775–3789, Jul. 2016.

[5] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs:
Uncertainty principle and sampling,” IEEE Trans. Signal Process., vol.
64, pp. 4845–4860, Sep. 2016.

[6] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, “Adaptive
graph signal processing: Algorithms and optimal sampling strategies,”
IEEE Trans. Signal Process., vol. 66, pp. 3584–3598, Jul. 2018.

[7] F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “A precon-
ditioned graph diffusion LMS for adaptive graph signal processing,” in
Proc. 26th EUSIPCO, 2018, pp. 111–115.

[8] P. Di Lorenzo, P. Banelli, S. Barbarossa, and S. Sardellitti, “Distributed
adaptive learning of graph signals,” IEEE Trans. Signal Process., vol.
65, pp. 4193–4208, Aug. 2017.

[9] R. Nassif, C. Richard, J. Chen, and A.H. Sayed, “Distributed diffusion
adaptation over graph signals,” in Proc. IEEE ICASSP, 2018, pp. 4129-
4133.

[10] A. H. Sayed, Adaptation, Learning, and Optimization over Networks,
vol. 7, Foundations and Trends in Machine Learning, now Publishers
Inc., Hanover, MA, 2014.

[11] E. Isufi, G. Leus, and P. Banelli, “2-dimensional finite impulse response
graph-temporal filters,” in Proc. IEEE GlobalSIP, 2016, pp. 405–409.

[12] A. H. Sayed, Adaptive Filters, John Wiley & Sons, NJ, 2008.
[13] J. Arenas-Garcia, L. A. Azpicueta-Ruiz, M. T. M. Silva, V. H. Nasci-

mento, and A. H. Sayed, “Combinations of adaptive filters: Performance
and convergence properties,” IEEE Signal Process. Mag., vol. 33, pp.
120–140, Jan. 2016.

[14] M. Lázaro-Gredilla, L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and
J. Arenas-Garcia, “Adaptively biasing the weights of adaptive filters,”
IEEE Trans. Signal Process., vol. 58, pp. 3890–3895, Jul. 2010.

[15] N. Perraudin, J. Paratte, D. I. Shuman, V. Kalofolias, P. Vandergheynst,
and D. K. Hammond, “GSPBOX: A toolbox for signal processing on
graphs,” arXiv, vol. preprint:1408.5781, 2014.

2019 27th European Signal Processing Conference (EUSIPCO)

