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Abstract—The development of Automatic Lip-Reading (ALR)
systems is currently dominated by Deep Learning (DL) ap-
proaches. However, DL systems generally face two main issues
related to the amount of data and the complexity of the model.
To find a balance between the amount of available training data
and the number of parameters of the model, in this work we
introduce an end-to-end ALR system that combines CNNs and
LSTMs and can be trained without large-scale databases. To this
end, we propose to split the training by modules, by automatically
generating weak labels per frames, termed visual units. These
weak visual units are representative enough to guide the CNN to
extract meaningful features that when combined with the context
provided by the temporal module, are sufficiently informative to
train an ALR system in a very short time and with no need
for manual labeling. The system is evaluated in the well-known
OuluVS2 database to perform sentence-level classification. We
obtain an accuracy of 91.38% which is comparable to state-of-
the-art results but, differently from most previous approaches,
we do not require the use of external training data.

Index Terms—Lip-reading, Visual Speech, Deep Learning

I. INTRODUCTION

In the last decades, there has been a growing interest in
Automatic Lip-Reading (ALR) systems. Similarly to other
computer vision applications, methods based on Deep Neural
Networks (DNNs) have permitted to substantially push for-
ward the achievable performance.

The successful construction of end-to-end DNNs generally
faces two main issues: a) the need for big amounts of training
data; b) the need of complex models with millions of param-
eters that take a lot of time to train. In the context of ALR,
data have been so far an important limitation, given that most
audio-visual databases suitable for ALR are not sufficiently
large or do not cover enough vocabulary to train end-to-end
architectures that generalize well. Moreover, acquisition of
new databases is challenging, especially due to the need for
appropriate labeling (e.g. text or phonemes aligned with the
video stream), which is time-consuming and error-prone.

A widespread alternative to avoid having to train DNNs
from scratch, is to use pre-trained models. Unfortunately,
it is difficult to find available models specifically trained
for lip-reading. Thus, some authors have explored the use
of pre-trained models designed for other computer vision
applications, e.g. AlexNet, VGG, GoogLeNet or ResNet [1]–
[4]. Those pre-trained models have shown to behave well in
several classification scenarios, but the fact that they were not
trained specifically for ALR leads to sub-optimal performance.

For example, Chung et al. [2] reported experiments with
two networks, both evaluated in the same dataset. The first
one was trained from scratch for lip-reading and reported
state-of-the-art performance; the second one combined the
VGG-M network (pre-trained on the ImageNet database) with
a Long-Short Term Memory (LSTM) network and reported
poor accuracy. Thus, building ALR systems based on DNNs
remains a time consuming and effort-intensive task.

In this work, we introduce an architecture that combines
Convolutional Neural Networks (CNNs) and LSTMs, which
can be trained without the need for large-scale databases. We
propose to use weakly-supervised learning to label the data
in an automatic manner in terms of visual units. These weak
visual units are representative enough to guide the CNN to
extract meaningful features that, together with context infor-
mation, are sufficiently informative to train an ALR system
in a very short time and with no need for manual labeling.
The system is evaluated in the well-known OuluVS2 database
[5] to perform sentence-level classification, and it obtains an
accuracy of 91.38% which is comparable to state-of-the-art
results but, differently from most previous approaches, it does
not require the use of external training data.

II. RELATED WORK

As highlighted in the recent review in [6], the most promis-
ing DNN architectures for ALR stand out as the combination
of CNNs and Recurrent Neural Networks (RNNs) (i.e. LSTMs
or Gated Recurrent Units (GRUs)), which have achieved
the highest Classification Rates (CR) so far [2]–[4], [7]–[9].
These CNN-RNN architectures, however, have proven to be
especially data-hungry to train properly. In this work, we are
interested in systems that perform sentence-level classification
without the need for large-scale databases. Specifically, we will
focus on those systems that have been evaluated in OuluVS2
because it is a widely used small-scale database.

The design of end-to-end architectures for small-scale
databases is challenging because there are not enough sam-
ples to successfully train DNNs that produce state-of-the-art
performance. Thus, DNN architectures evaluated in OuluVS2
have mainly followed two strategies: a) to use pre-trained
models to avoid having to train DNNs from scratch; b) to
deal with low resource data designing alternative architectures
or data augmentation (DA) techniques. Among systems that
use pre-trained models we find the work of Saitoh et al. [1]
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who propose to re-train 3 well-known CNNs (NIN, AlexNet
and GoogLeNet) to perform phrase classification, obtaining
the highest CR with GoogLeNet (85.60%) for frontal-view
experiments. In contrast, Chung and Zisserman [2] proposed
two models based on CNNs and LSTMs. The differences
between the models fall on the CNN. The first model uses
a pre-trained CNN, known as VGG-M, which was pre-trained
on the ImageNet dataset [10] while the second model, named
SyncNet, was pre-trained using the LRW dataset [11]. For the
VGG-M based model they obtained a CR of 31.90%, while
for the SyncNet based model they reported the state-of-the-
art CR of 94.10%. In another work from them [11], a CNN
system was pre-trained on the LRW dataset to perform phrase
classification by processing video segments of 1-second at a
time and reported 93.20% of CR.

Other researchers proposed the construction of ALR sys-
tems without using external data. Among them we firstly find
the work from Lee et al. [7], who proposed to directly train
from scratch an end-to-end network based on CNNs, LSTMs
and Fully Connected (FC) layers, without using additional
external data nor special training techniques to deal with
the shortage of data. In this way, they reported 81.10%
CR, which is 13% below the state-of-the-art performance.
Consequently, researchers decided to deal with low resource
data by augmenting the corpus or by exploring alternative
architectures that deviate from the main CNN-RNN trend. For
example, Fung and Mak [12] proposed an end-to-end model
that follows the CNN-RNN baseline, but where a huge DA
was crucial to circumvent the issue of insufficient training
data. Their model fuses 3D-CNNs and BiLSTM together with
maxout activation units and reported 87.60% CR in frontal-
view experiments. On the other hand, Petridis et al. [13]–[15]
proposed three alternative architectures based on an encoding
network combined with directional and bidirectional LSTMs
which were trainable without adding external data, reporting
84.50% CR, 91.80% CR and 91.80% CR, respectively for
frontal-view experiments. In contrast to the above methods, in
this work we propose to follow the main trend of most success-
ful ALR systems, based on the CNN-RNN architectures. We
show that, by appropriately adding weak intermediate labels
to split the training process, we are able to get near state-of-
the-art performance without the need for external data.

III. END-TO-END LIMITED DATA NETWORK

We introduce our Limited Data Network (LDNet), which
consists of a visual module (CNN) followed by a temporal
module (LSTM) which outputs the spoken phrase. The visual
module receives color images of the mouth as input and
extracts visual features that encode the mouth appearance.
Then, for each frame, the output of the CNN is the input to a
temporal module based on LSTMs that incorporates temporal
context and accumulates the contribution of each frame to
return the estimated phrase at the end of the sequence.

Specifically, the visual module architecture (Fig. 1) is based
on VGG-M [16] because it was shown to perform well in
classification tasks and contains fewer parameters than other

Fig. 1. The visual module architecture of LDNet. It inputs RGB images and
outputs the most probable visual unit.

VGG models (e.g. VGG-16 or VGG-19 [10], [17]), leading to
faster training [11]. The model contains 5 convolutional layers
combined with batch normalization, max pooling and dropout,
followed by two FC layers. The temporal module consists of
a cascade of two LSTM layers with 256 hidden units which
perform phrase classification at the end of the sequence, only
after the whole stream has been processed.

A. Training with limited data

If we attempt to train an end-to-end system with a small
scale database such as OuluVS2 we soon realize that we are
short of data. In order to properly train an end-to-end system,
we must find a balance between the amount of available
training data and the number of parameters of the model.
For example, the well known AlexNet for object classification
contains 62 millions of parameters, which were trained from
14 million images (∼22% of the numbers of parameters). In
contrast, the number of parameters of our network is ∼15
millions, while the amount of available training samples is
just 1,200 sequences. Thus, the ratio between parameters
and training data exceeds 100 : 1, which makes it very
difficult and time-consuming to train the network at once.
Consequently, we propose to split the training by modules:
the visual module (∼12 million parameters) and the temporal
module (∼3 millions). It is quite intuitive to split the training
in this way because each module has a specific goal which
can be reached independently. The goal of the visual module
is to parametrize the visual information observable at a given
time instant or window. On the other hand, the temporal
module aims to map the visual features into speech units while
incorporating temporal constraints to ensure that the decoded
message is coherent.

Therefore, we use intermediate labels to subdivide each
training sentence into smaller units that can be used to train
separately the visual module. This is useful because the
number of training samples is increased, making the model
easier to train and generalize. Moreover, this allows to control
that the CNN learns to extract meaningful features sufficiently
informative to encode the mouth appearance in a way that is
helpful for the temporal module to predict the correct phrase.

To do so, we ideally need a dataset that provides very ac-
curate speech labels, i.e. phonemes or visemes. Unfortunately,
most of the lip-reading datasets, including OuluVS2, provide
only the text that corresponds to each phrase but do not provide
phoneme or viseme labels per frame. Furthermore, while there
exist semi-automatic programs such as Praat [18] or Montreal
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Forced Aligner [19] to align the text with the audio stream,
they often require considerable manual intervention to refine
the boundaries of each phoneme, resulting in a challenging
and time-consuming process that does not scale well.

As a solution, based on the observation that the CNN only
needs to distinguish among visually separable classes, we
propose to rely on weak labels that, while imperfect, can be
generated automatically in such a way that they are still infor-
mative about the mouth appearance. Hence, we hypothesize
that, if the CNN is able to differentiate among these weak
visual labels, the features generated at the last step of the
visual module (those at the FC layers) will properly encode
the mouth appearance and will be helpful for the temporal
module to decode visual speech. Once the visual module is
trained, its classification layer is removed and the output from
the FC layers is fed to the temporal module, which can be
trained for phrase classification in a straight-forward manner.

B. Visual units
We propose to automatically generate weak frame labels

to train the visual module to classify visual units. We de-
fine a visual unit as a collection of visually similar images
constrained by phonetics, which we obtain by minimizing an
energy function. We define a function f : Z ⇒ Z that maps a
frame m into a visual unit v ∈ [1, V], where V is the number
of visual units. We define the energy function to minimize as:

argmin
f

∑
6=s,v 6=

∑
6=m6=

f(m)=v

∑
n6=m

f(n)=v

‖ I(m)− I(n) ‖2+ (1)

+λ1
∑
s,m

∑
n6=m

|n−m|≤W

δ(f(m)− f(n))B(m,n; Im, In)+

+λ2
∑
t

∑
m,n∈t

δ(f(m)− f(n)) + λ3
∑
s,u

| Tu − Pu |

The first term from eq. (1) derives directly from our def-
inition of visual units, which shall be groups of frames
with similar appearance. However, it is evident that inter-
subject differences should not affect the resulting grouping.
Hence, we penalize that two frames m and n of the same
subject s get assigned to the same visual unit v if there are
large intensity differences between them. The second term
controls temporal coherence. It is assumed that neighboring
frames (with a maximum distance W) should correspond to
the same visual unit v, unless they have a large appearance
difference. Thus, we enforce that frames m and n that are
temporally close and have similar appearance are assigned
the same visual unit. We do so by penalizing the function
δ(f(m) − f(n)) = 1 − δ(f(m) − f(n)) (where δ() is the
Kronecker delta) weighted by a temporal bilateral filter B that
depends on both the appearance difference and the temporal
proximity, defined as:

B(m,n; Im, In) = φ1(‖ In − Im ‖)φ2(‖ n−m ‖) (2)

where φ1 and φ2 are Gaussian kernels. These temporal con-
straints induce temporal segments t of frames labeled with the
same visual unit until an appearance transition (Fig.2-Left).

Fig. 2. Left: automatic visual units labeling of the phrase ”How are you” for
subjects 17, 3 and 7; for every segment we show the mean image over the
segment. Right: examples of frames within 5 of the resulting visual units.

TABLE I
NUMBER OF EXPECTED TIME-SEGMENTS PER PHRASE

Phrase P Phrase P
Excuse me 5 See you 3
Goodbye 4 I am sorry 5

Hello 3 Thank you 3
How are you 5 Have a good time 5

Nice to meet you 5 You are welcome 5

The third term controls speech consistency, which is adapted
to the structure of OuluVS2, where all speakers are uttering
the same phrases. Consider two recordings of the same phrase;
we would expect that the visual units labeling their temporal
segments are in correspondences. Thus, we assume that frames
m and n within a time-segment t in any utterance of the same
phrase belong to the same visual unit v. Finally, the last term is
a regularization term that limits the number of segments T per
utterance considering phonetics. We set the expected number
of time-segments per sentence P using the phoneme-to-viseme
mapping proposed by Jeffers and Barley [20], as it has been
one of the most widely used mappings for English [21]–[24].
In Table I we show the number of time-segments per sentence.

Once the final set of visual units has been established, the
visual module can be trained to predict them. Afterwards, the
classification layer of the visual module is removed, all their
weights are frozen and the LSTMs are connected after them
to perform phrase classification.

IV. EXPERIMENTAL SETTINGS

A. Database

The OuluVS2 database [5] contains multi-view video
recordings from 52 speakers uttering continuous digit se-
quences, short phrases and TIMIT sentences. We used the
frontal-views of the second session where subjects were asked
to read 10 daily-use English phrases. We tested our system in a
speaker-independent setting. Following the testing procedure
proposed by the database creators, we used 12 subjects for
testing (s6, s8, s9, s15, s26, s30, s34, s43, s44, s49, s51 and
s52) and 40 subjects for training and validation. Thus, we had
360 videos for testing (12 subj × 10 phrases × 3 repetitions),
1020 for training (40 subj × 10 phrases × 3 repetitions ×
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0.85) and 180 for validation. We provide our results in terms
of phrase-level classification (the standard for this dataset).

B. Data pre-processing

We used the cropped and aligned mouth regions provided
by OuluVS2. Taking into account that our visual module is
based on VGG-M, we normalized all sequences to 1/4 of the
original VGG-M size (224x224) per axis, yielding a fixed size
of 56x56 pixels. The motivation to do so is twofold; 1) to
simplify the network by reducing the number of parameters;
2) because VGGs have been used with whole-face images,
hence it seems reasonable to reduce the region considering
the mouth size with respect to the whole face size.

C. Weak labeling in terms of visual units

The minimization of eq. (1) was done following an iterative
process. Specifically, we start by splitting each phrase in P
time-segments (Table I), which should theoretically be visually
separable. These initial units will be speaker independent, i.e
when a phrase is split into P segments, we expect to find units
highly correlated with the spoken sentence but not with the
speaker identity (i.e. similarly to visemes). Then, we start by
clustering the frames of each phrase separately for each subject
and then merge those units that are shared among different
phrases from the same subject. Specifically, two visual units
of different phrases will be fused into a single one, if and
only if the distance between their centroids is smaller than
the average minimum distance between visual units within the
same phrase, and the above condition is met by at least 50%
of the subjects in the training set.

The first condition sets a relative threshold to determine
when two different segments should actually be considered
instances from the same class. The second condition, ensures
that such similarity is sufficiently consistent across subjects to
be considered generic and not subject-specific. At the end of
this merging process, we end up with a separate set of visual
units for each subject. However, all sets have the same number
of visual units and they are in correspondence across subjects.
Thus, we can simply fuse those sets into a common one, that
contains the contributions from all subjects and can be used
to train our visual module in a subject-independent manner.

D. Architecture details

Both modules are trained using stochastic gradient descent
(SGD) with a momentum of 0.2, mini-batches of size 32
for the visual module and 1 for the temporal module, and
learning rate 0.01. The classifiers are a softmax that uses cross-
entropy loss to classify among 13 visual units (visual module)
or among 10 phrases (temporal module). In both cases, DA
was necessary to deal with the short-scale training set. DA
consisted of horizontal flips, rotation of a maximum of 10
degrees, width/height shifts and zooming up to 5% of the
image resolution. To deal with over-fitting, we applied the
following regularization methods to the visual module: batch
normalization, dropout and L2-regularization. Batch normal-
ization and dropout of 0.5 were performed between several

convolutional layers (as indicated in Fig. 1). In contrast, L2-
regularization with 0.1 weight was applied to fully connected
layers to penalize highly positive or negative weights. Ex-
periments were performed in a computer with an Intel Core
i7-7700 processor (3.6 GHz), 16 GB RAM, and a single
NVIDIA GeForce GTX 1060 graphic processing unit with
6 GB on-board graphics memory. The proposed model was
implemented using the Keras framework with a Tensorflow
backend. The total training time for our system was around
3.5 hours (∼ 2 hours for the visual module), without requiring
any pre-trained model nor additional training data.

V. RESULTS

A. LDNet Results

As explained in Section III, instead of training the system
fully end-to-end, we split the training by modules:

1) Visual module: We trained the visual module to classify
among visually distinguishable units, which were determined
by minimizing eq. (1) and resulted in 13 visual units. Fig.2-
Right shows a few examples from 5 resulting visual units.

The CR obtained by the CNN module was 47.67%. While at
first glance these results may seem modest, we will see that the
features learned in this way by the CNNs are useful enough for
the temporal module to produce high phrase recognition rates.
Moreover, keeping in mind that our visual units are based on
a similar definition to the one commonly used for visemes,
our results are not far from those reported for phoneme and
viseme classification in ALR [25]–[28].

2) Temporal module: The temporal module shows the
performance of the whole system because it outputs the spoken
phrase. Following the procedure from [12], [15] we obtained
an average CR of 91.38% (± 0.61% standard deviation)
averaged over 10 runs of temporal module training.

B. Comparison to other ALR systems

In this section we compare the DNN architectures evaluated
in the OuluVS2 database (Table II). Among systems using
external training data, we firstly find the three systems pro-
posed by Saitoh et al. [1]. Those systems used pre-trained
models that were trained in external databases not related to
lip-reading and were fine-tuned for OuluVS2. The GoogLeNet
model achieved the maximum performance of 85.60% CR.
Similarly, Chung and Zisserman [2], [9] proposed two systems
specifically trained for lip-reading but pre-trained on much
larger databases (LRW and LRS), and later fine-tuned for
OuluVS2, achieving a maximum of 94.10% CR in [2].

There are several systems that do not use external data
to train their model [7], [12]–[15]. Among them, the most
direct comparison to our system are those based on similar
architectures, combining CNNs and LSTMs [7], [12]. The
main difference between those systems and ours is the training
process. In the case of Lee et al. [7], they directly trained
their ALR system end-to-end from scratch, achieving a rather
low performance of 81.10% CR. More recently, Fung and
Muk [12] proposed a training strategy based on a big DA
and on adding maxout activation units for ensuring a better
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TABLE II
COMPARISON WITH PREVIOUS WORK ON THE OULUVS2 DATABASE.

With pre-trained models Without pre-trained models
Architecture CR (%) Architecture CR (%)
CFI+NIN [1] 81.10 CNN+LSTM [7] 81.10

CFI+AlexNet [1] 82.80 Encoder+LSTM [13] 84.50
CFI+GoogLeNet [1] 85.60 Encoder+BiLSTM [14] 91.80
VGG-M+LSTM [2] 31.90 Encoder+BiLSTM [15] 91.80
SyncNet+LSTM [2] 94.10 CNN+BiLSTM [12] 87.60

CNN+LSTM+Att. [9] 91.10 LDNet (Ours) 91.38

training. They achieved a higher accuracy (87.60% CR) with
a system that combines 3D-CNNs with BiLSTMs. In contrast,
in LDNet we follow a CNN-LSTM baseline, but propose an
alternative training process. Specifically, we train the visual
module separately to classify weakly labeled visual units,
which are directly related with the spoken phrases. This has
proven to be beneficial because it allows to increase the
training samples while ensuring that the learned features are
directly related to speech and not to other aspects such as
speaker appearance. In this way, when the temporal module is
added after the visual module, our system is able to achieve
an average CR of 91.38%, which is quite competitive even
with respect to systems using pre-trained models.

A different direction has been explored by Petridis et al.
[13]–[15], who presented 3 systems based on an encoding
network combined with BiLSTMs. Even though these systems
do not follow the current trend in ALR, they reported 91.80%
CR, which are state-of-the-art comparable results. However,
analyzing these ALR systems we find that they were not
trained end-to-end from scratch; instead, they pre-trained the
encoding layer in a greedy layer-wise manner using Restricted
Boltzmann Machines. They initialized their systems with the
pre-trained encoder and trained the BiLSTMs while fine-
tuning the encoder parameters. Compared to these 3 systems,
LDNet provides a very similar accuracy, with low training time
and maintaining a main-stream end-to-end ALR architecture,
which is likely to benefit from the latest advances in the field,
currently based on CNN-RNN architectures [6].

VI. CONCLUSIONS

In this work, we investigate the design of an end-to-end
ALR system that is simple to train without the need of
large-scale databases. The design of end-to-end architectures
with limited training data is challenging because there are
not enough samples to successfully train DNNs that produce
top performance. Thus, we propose to weakly label the data
in an automatic manner in terms of visual units, which are
representative enough to disambiguate among different phrases
when context information is also provided. Specifically, we
introduce an ALR system that performs phrase-level classi-
fication combining a visual module based on CNNs and a
temporal module based on LSTMs. We show that, thanks to
the weak intermediate labels, it is feasible to obtain state-
of-the-art performance by splitting the training by modules.
We evaluated our system in the well-known OuluVS2 and

reported a CR of 91.38% which is comparable to state-of-the-
art results. Differently from previous approaches, our system
does not require the use of any pre-trained model or external
training data. LDNet training was completed in approximately
3.5 hours in a desktop computer with standard GPU hardware.
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