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Abstract—We propose a method to synthesize the two-
dimensional (2D) exterior sound field of a directional sound
source using a Cartesian multipole loudspeaker array in which
each loudspeaker unit is located on a Cartesian grid. We also
propose an analytical method that models the sound field of the
desired directional source in order to obtain weighting coeffi-
cients for each multipole from the circular harmonic expansion
coefficients. The conversion method is derived by comparing
the sound field created by a higher-order derivative of the free
field Green’s function and the corresponding field expressed by
circular harmonic expansion coefficients in 2D space. In contrast
to an existing analytical conversion method, the proposed method
reproduces not only directivity patterns but also phases of the
radiated sound from a target sound source, thereby enabling
accurate sound field synthesis. We used numerical simulations
to show that the proposed method achieved more accurate
sound field reproduction than an existing pressure-matching-
based method at higher frequency regions.

Index Terms—multipole loudspeaker array, circular harmon-
ics, sound field synthesis, analytical method, Cartesian multipole

I. INTRODUCTION

Spatial audio reproduction is key for providing highly
realistic experiences to audiences in theaters, and such systems
have recently been introduced for live events [1] [2]. Most
of these systems are implemented on the basis of two major
sound field expressions: higher order ambisonics (HOA) [3]
[4] and wave field synthesis (WFS) [5] [6]. HOA decomposes
the sound field at an arbitrary point with spherical harmonic
expansion [4], while WFS reproduces an arbitrary sound field
by using secondary source distributions on the basis of the
first Rayleigh integral [6].

There is another method to express sound fields, namely,
multipole superposition. Multipole superposition is a technique
to reproduce desired sound fields or directional patterns by
superposing weighted “basic multipoles” such as dipoles,
quadrupoles, and so on [7]–[11]. It has been indicated that
multipole sources span the same space as that described by
circular or spherical harmonics [12]. Most applications of
multipole sources have aimed at reproducing only directivity
patterns of target acoustic sources using loudspeaker arrays
[13]–[16]. These applications are based on the least-squares
method [14] [15], orthogonal projection into basis functions
[13], and analytical conversion from circular harmonics to
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Fig. 1. Overview of proposed method.

weighting coefficients [16]. Several methods that reproduce the
phase as well as the directivity of an arbitrary-order multipole
are based on circular loudspeaker arrays and least-squares-
based methods [17]–[19].

In this paper, we propose a method to synthesize the two-
dimensional (2D) exterior sound field of a directional sound
source on the basis of multipole superposition (Fig. 1) by
using a Cartesian multipole loudspeaker array in which loud-
speaker units are arranged on a Cartesian grid. The proposed
method analytically converts circular harmonic expansion
coefficients, which are obtained from the sound field of a
target sound source, into weighting coefficients for multipoles.
Thus, compared to least-squares-based methods, the proposed
method can avoid becoming ill-conditioned when calculating
weighting coefficients. The conversion method is derived from
comparing the coefficients of two different expressions of the
desired sound field: one, the circular harmonic expansion,
and two, the weighted sum of partial derivatives of the free
field Green’s function of the Helmholtz equation. Numerical
simulations are performed to compare the accuracy of the
sound fields reproduced by the proposed method and an
existing pressure-matching-based method.

II. SOUND FIELD OF A DIRECTIONAL SOURCE

A. Free field Green’s function in 2D space

The sound field created by a point monopole located at the
position r′ is modeled by the Green’s function G(r|r′, k) that
satisfies the following Helmholtz equation driven by a spatio-
temporal Dirac pulse positioned at r′.

(∇2 + k2)G(r|r′, k) = δ(r− r′), (1)
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where r = (x, y) = (r, ϕ) is an arbitrary point in the Cartesian
or polar coordinate systems, respectively. k = ω

c is the wave
number. ∇ denotes the spatial gradient. ω and c are the angular
frequency and the speed of sound respectively. Assuming that
the target field is the free field in 2D space, the Green’s
function is expressed using the zero-th order Hankel function
of the second kind as follows [11].

G2D(r|r′, k) =
j

4
H

(2)
0 (k|r− r′|), (2)

where j =
√
−1 is the imaginary unit.

B. Partial derivatives of the Green’s function

The sound field created by the first-order partial derivative
of the Green’s function (2) along the x-axis is given as

∂G2D(r, k)

∂x
=

j

4

(
k
dr

dx

)
dH

(2)
0 (z)

dz

∣∣∣∣∣
z=kr

=
j

4
(k cosϕ)

H
(2)
−1 (z)−H

(2)
1 (z)

2

∣∣∣∣∣
z=kr

=
j

4
H

(2)
0 (kr) (−jk cosϕ) , (3)

where ϕ satisfies cosϕ = x
r . We used the following relation-

ships to obtain the above equation: H(2)
−n(z) = (−1)nH

(2)
n (z),

and H
(2)
n (z) ≈ jnH

(2)
0 (z) which holds for the large value

approximation of the n-th order Hankel function [20]. This
means that the partial derivative of the Green’s function (2)
with respect to x is approximated by multiplying the term
−jk cosϕ. Thus, the n-th-order derivative with regard to x
can be obtained by multiplying (−jk cosϕ)n by G2D. Partial
derivatives with regard to y can also be obtained by replacing
cosϕ with sinϕ. Thus, the higher-order derivative of the
Green’s function is expressed as follows.

∂m+n

∂xm∂yn
G2D(r, k) = G2D(r, k)(−jk)m+n cosm ϕ sinn ϕ.

(4)

C. Sound field expressed by circular harmonics

The sound field created by an arbitrary sound source can
also be expressed by the following circular harmonic expan-
sion [11].

S(r, k) =
∞∑

µ=−∞
CµH

(2)
µ (kr)ejµϕ. (5)

In actual implementation, the circular harmonics coefficients
Cµ are obtained by a Fourier transformation of acoustic signals
recorded by a circular microphone array placed around the
sound sources [21].

III. SOUND FIELD CREATED BY MULTIPOLE
SUPERPOSITION

A. Multipole sources

The sound field created by a dipole source along the x-axis
with a distance of 2d between adjacent monopole sources is
given by the following equation:

Sdipole(r, k) =
j

4
{H(2)

0 (k|r− d|)−H
(2)
0 (k|r+ d|)}

=
j

4
d

∞∑
n=−∞

{
Jn(kd)

d
− (−1)n

Jn(−kd)

d

}
H(2)

n (kr)ejnϕ.

(6)

Using l’Hôpital’s rule, the term related to the Bessel’s
function yields,

lim
d→0

Jn(kd)

d
= lim

d→0
k
dJn(z)

dz

∣∣∣∣
z=kd

= k
Jn−1(0)− Jn+1(0)

2
.

(7)
At x = 0, the Bessel’s function Jn(x) gives 0 for any value
of n other than 0. Thus the last equation of (6) yields

Sdipole(r, k) =
j

4
dk

{
H

(2)
1 (kr)ejϕ −H

(2)
−1 (kr)e

−jϕ
}

=
j

4
{2dkH(2)

1 (kr) cosϕ}

≈ G2D(kr){2jdk cosϕ}. (8)

To obtain the above equation, we used the following re-
lationships again: H(2)

−n(z) = (−1)nH
(2)
n (z), and H

(2)
n (z) ≈

jnH
(2)
0 (z).

This equation means that the first-order multipole (dipole)
along the x-axis is approximated by multiplying the term
2jdk cosϕ by G2D. Thus, the n-th-order multipole along the
x-axis can be obtained by multiplying (2jdk cosϕ)n by G2D.
Partial derivatives with regard to y can also be obtained by
replacing cosϕ with sinϕ. Thus, the higher-order multipole is
defined as follows:

Sm,n(r, k) = G2D(kr)(2jdk)
m+n cosm ϕ sinn ϕ

= (−2d)m+n ∂m+n

∂xm∂yn
G2D(r, k). (9)

As can be seen from this equation, the sound fields created
by higher-order multipoles correspond to higher-order deriva-
tives of the free field Green’s function, other than a coefficient
(−2d)n.

B. Multipole superposition

The sound field created by a directional source can be
expressed by superposition of basic multipoles weighted by
coefficients obtained by the source’s directivity pattern. The
sound field is expressed by the following equation.

S(r, k) =
∞∑

m=0

∞∑
n=0

Dm,n
∂m+n

∂xm∂yn
G2D(r, k), (10)

where Dm,n is the weighting coefficient for the (m,n)-th-
order multipole. It is important to obtain these weighting
coefficients for each multipole correctly for accurate sound
field synthesis of the target directional sound source using
multipole superposition.

Such an acoustic inverse problem sometimes becomes
ill-conditioned for obtaining weighting coefficients if least-
squares-based methods are employed [11] [22]; in such cases,
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analytical methods are useful. Methods of analytical con-
version among circular harmonics, spherical harmonics, and
an angular spectrum have been investigated in the field of
WFS [22] [23]; however, there are few analytical methods for
obtaining weights of multipole sources from those expansion
coefficients [16]. In the following section, we propose an
analytical method to convert circular harmonic expansion
coefficients to weighting coefficients of multipoles.

IV. ANALYTICAL CONVERSION OF CIRCULAR HARMONICS
FOR MULTIPOLE SUPERPOSITION

A. Derivation of analytical conversion

As can be seen from (9), the (m,n)-th-order multipole
creates a directivity pattern expressed by a combination
cosm ϕ sinn ϕ. Thus, we modify the equation (5) to obtain
the coefficients of cosm ϕ sinn ϕ. In the following equation,
H

(2)
µ (kr) is denoted by H

(2)
µ .

S(r, k) =
∞∑

µ=−∞
CµH

(2)
µ ejµϕ

= C0H
(2)
0 +

∞∑
µ=1

H(2)
µ {Cµe

jµϕ + (−1)µC−µe
−jµϕ}.

Using the relationship H
(2)
µ ≈ jµH

(2)
0 , we obtain the follow-

ing equation:

S(r, k) = H
(2)
0

[
C0 +

∞∑
µ=1

jµ{Cµe
jµϕ + (−1)µC−µe

−jµϕ}

]
.

Applying Euler’s equation followed by binomial expansion to
the term ejµϕ in (5), the above equation yields,

S(r, k) = C0H
(2)
0 +

∞∑
µ=1

H(2)
µ {Cµe

jµϕ + (−1)µC−µe
−jµϕ}

= H
(2)
0

[
C0 +

∞∑
µ=1

jµ
µ∑

n=0

jn
(
µ
n

)
{Cµ + (−1)µ−nC−µ}·

cosµ−n ϕ sinn ϕ

]
.

(11)

Using (2), (4), and (10), the same sound field is expressed
as

S(r, k) =
∞∑

µ=0

µ∑
n=0

Dµ−n,n
j

4
H

(2)
0 (−jk)µ cosµ−n ϕ sinn ϕ.

(12)
Comparing coefficients of cosµ−n ϕ sinn ϕ, the following

equation holds.

Dµ−n,n
j

4
(−k)µ = jn

(
µ
n

)
{Cµ + (−1)µ−nC−µ}.

Replacing µ with m+ n, we obtain weighting coefficients
as

Dm,n =
4jn−1

(−k)m+n

(
m+ n

n

)
{Cm+n + (−1)mC−m−n}.

(13)

To reproduce the sound field of higher-order derivatives
of the Green’s function using multipole superposition, the
term (−2d)m+n must be multiplied by the partial derivatives.
Considering this term, the weighting coefficients for multipole
superposition yield

Dm,n =
4jn−1

(2dk)m+n

(
m+ n

n

)
{Cm+n + (−1)mC−m−n}.

(14)

B. Relation to existing analytical conversion

An analytical method for obtaining weighting coefficients
from circular harmonic coefficients has been previously pro-
posed [16]. This method derived weighting coefficients by
comparing the sound field expressed by circular harmonic
expansion and Taylor’s expansion on a unit circle with a
directional source at its center. The weighting coefficients
derived in [16] are given as the following equation:

D(old)
m,n =

jn

(j2dk)m+n

(
m+ n

n

)
·{

Cm+nH
(2)
m+n(k) + (−1)nC−m−nH

(2)
−m−n(k)

}
=

jnH
(2)
0 (k)

(2dk)m+n

(
m+ n

n

)
{Cm+n + (−1)mC−m−n} .

(15)

Compared with the proposed method (14), the existing
method is expressed as follows:

D(old)
m,n =

j

4
H

(2)
0 (k)Dm,n. (16)

This equation shows that the weighting coefficients obtained
by the proposed method were weighted by the value of the
free field Green’s function along a unit circle in the weighting
coefficient obtained by [16]. This factor affected the phase
of the reproduced sound field, making accurate sound field
synthesis difficult.

V. IMPLEMENTATION OF MULTIPOLE SOURCES

A. Sound field of an arbitrary-order multipole

The sound field created by the (m, n)-th-order multipole (9)
is expressed by the following linear combination of the Hankel
functions.

Sm,n(r, k) =
j

4

m∑
µ=0

n∑
ν=0

gm,n
µ,ν H

(2)
0 (k|r− rm,n

µ,ν |), (17)

where rm,n
µ,ν = (xm

µ , ynν ) and gm,n
µ,ν denote the position of the

(µ, ν)-th monopole source in the multipole and the gain of the
corresponding monopole source, respectively. Positions and
gains for monopole sources in an arbitrary-order multipole are
formulated in the following subsections.
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Fig. 2. Positions and gains of monopoles in multipoles up to the second
order. (a) 1D space. (b) 2D space.

B. Positions of monopole sources in a multipole

The n-th-order multipole is obtained by arranging two of
the (n-1)-th-order multipoles with an interval of 2d. Because
multipoles have some volume, these lower-order multipoles
are superposed. As a result, n+1 monopole sources form the
n-th-order multipole as depicted in Fig. 2 (a). The positions
of monopole sources in the (m, n)-th-order multipole are
summarized by the following equation:

xm
µ = xc + (m− 2µ)d (0 ≤ µ ≤ m)

ynν = yc + (n− 2ν)d (0 ≤ ν ≤ n), (18)

where (xm
µ , ynν ) is the position of the (µ, ν)-th monopole in

the (m, n)-th-order multipole. (xc, yc) is the center of the
multipole.

C. Gains of monopole sources in a multipole

Gains for each monopole source in a multipole are obtained
by multiplying +1 for the lower-order multipole shifted in a
positive direction and −1 for that shifted in a negative di-
rection, followed by superposing these lower-order multipoles
as depicted in Fig. 2 (a). The gains of monopole sources in
the (m, n)-th-order multipole are summarized by the following
equation:

gXζ =


1 (ζ = 0)

gX−1
ζ − gX−1

ζ−1 (0 < ζ < X)

−gX−1
ζ−1 (ζ = X).

(19)

The above rule is applied to obtain gains for 2D cases. As
a result, the gain for the (µ, ν)-th monopoles in the (m, n)-
th-order multipole gm,n

µ,ν in a 2D case are calculated using the
product of the gain along the x-axis gmµ and y-axis gnν .

gm,n
µ,ν = gmµ · gnν . (20)

Both gmµ and gnν are computed by (19). Gains for each
monopole in the 2D cases up to N = 2 are illustrated in
Fig. 2 (b).

VI. EXPERIMENTAL RESULTS

We performed computer simulations to evaluate the pro-
posed method in comparison with an existing least-squares-
method based pressure-matching method [24].

dPM = (GHG+ λI)−1GHs, (21)

where dPM is a vector whose elements are weighting coef-
ficients for each multipole as dPM = [DPM

0,0 , · · · , DPM
0,N ]T, s

is a vector of sound pressures observed at controlling points
placed along a unit circle with a radius of 1 m (180 points
with an interval of 2◦ between adjacent controlling points), and
transfer function matrix G whose columns gl were defined
by (9) at the same controlling points. The maximum order
of multipole and circular harmonics N were set as 4 in this
simulation. The superscript [·]H is the Hermitian transpose of
a matrix. λ is a regularization parameter to prevent the inverse
matrix of G from being unstable [25].

To estimate the accuracy of the reproduced sound fields, the
error distributions between the original and reproduced sound
fields at position r were defined as

Err(r) = 10 log 10

(
|Sorg(r)− Ssyn(r)|2

|Sorg(r)|2

)
, (22)

where Sorg(r) and Ssyn(r) are the original and synthesized
sound field at position r, respectively. We used randomly
generated 2N + 1 complex numbers with amplitudes of less
than 1 for Cµ to compute the original sound field Sorg(r)
by (5), the synthesized sound fields by the proposed method
using (10) and (14), and the corresponding sound fields by
the existing method using (10) and (21). For the simulation,
a multipole loudspeaker array was placed at the origin of the
coordinate. The interval between adjacent monopole sources
in the multipole loudspeaker array (2d) was set as 0.01 m.

Figure 3 shows the results for the original sound field
and the sound fields synthesized by the least-squares-based
pressure-matching method and proposed method. The tem-
poral frequency was 2 kHz. Averaged synthesis error up to
3400 Hz computed in the region with −1.5 ≤ x ≤ 1.5 and
1.0 ≤ y ≤ 3.0 for the pressure-matching method and proposed
method was plotted in Fig. 4.

The results indicated that at frequencies higher than 1100
Hz, the proposed method reproduced the sound field of the
target directional source more accurately than the pressure-
matching method did.

VII. CONCLUSION

We proposed a method for synthesizing the 2D exterior
sound field of a directional sound source on the basis of multi-
pole superposition. By using a Cartesian multipole loudspeaker
array, the proposed method can reproduce the sound field of a
directional sound source modeled by circular harmonic expan-
sion coefficients. The proposed method analytically converts
the circular harmonic expansion coefficients into weighting
coefficients for multipoles. The conversion method is based on
a comparison of coefficients derived from circular harmonic
expansion coefficients and partial derivatives of the free field
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Fig. 3. Reproduced sound fields and error distributions for N = 4.
(a) Original sound field. (b) Sound field reproduced by existing pressure-
matching-based method. (c) Sound field reproduced by proposed method. (d)
Error distribution between original sound field and that reproduced by existing
method. (e) Error distribution between original sound field and that reproduced
by proposed method. (f) Positions of loudspeakers in a multipole array.
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Fig. 4. Results of averaged synthesis error for N = 4. Prop: error of proposed
method. Ref: error of existing pressure-matching-based method.

Green’s function of the Helmholtz equation. Weighting coeffi-
cients obtained by the existing method [16] were weighted by
the Green’s function calculated along the unit circle compared
with the coefficients obtained by the proposed method, thereby
reproducing only the desired directivity pattern. Using numeri-
cal simulations, we showed that the sound field reproduced by
the proposed method was more accurate than that reproduced
by the existing pressure-matching-based method, at regions
with frequencies higher than 1100 Hz.
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