
A Robust and Sequential Approach for Detecting
Gait Asymmetry Based on Radar Micro-Doppler

Signatures
Ann-Kathrin Seifert‡∗, Dominik Reinhard‡∗, Abdelhak M. Zoubir‡, Moeness G. Amin†

‡ Signal Processing Group † Center for Advanced Communications
Technische Universität Darmstadt Villanova University

Merckstr. 25, 64283 Darmstadt, Germany Villanova, PA 19085, USA
{seifert, reinhard, zoubir}@spg.tu-darmstadt.de moeness.amin@villanova.edu

Abstract—Recently, radar has become of increased interest
to serve as an unobtrusive sensor for human motion analysis.
In particular, for gait analysis, radar could supplement existing
technologies to enhance medical diagnostics. Quick turn-around
medical evaluation and diagnosis requires reduced data acquisi-
tion time which is of interest to patients, doctors, and therapists
alike. Hence, we present a robust and sequential approach
for detecting gait asymmetry based on radar micro-Doppler
signatures. The results obtained based on experimental radar
data indicate that high detection rates can be achieved at reduced
measurement times compared to conventional approaches.

Index Terms—sequential detection, robustness, gait analysis,
Doppler radar, ambient assisted living

I. INTRODUCTION

Clinical gait analysis plays a central role in diverse appli-
cations such as medical diagnosis, rehabilitation and sports.
Many neurodegenerative (multiple sclerosis, Alzheimer’s,
Parkinson’s), musculoskeletal (osteoarthritis), or cardiovascu-
lar (heart failure) diseases have been shown to alter a person’s
gait [1]. In particular, many pathological disorders lead to
differences between the left and right leg motion, which is
referred to as gait asymmetry [2]. Timely detection of gait
asymmetry enables early diagnosis and thus can help to ensure
proper treatment and improved prognosis.

Recently, a variety of mobile gait analysis systems have
been proposed for continuously monitoring a person’s gait
during activities of daily living (for a review see e.g. [3], [4]).
However, since wearable sensors typically need to be worn
on the body, they are unfavorable compared to contactless,
remote sensing devices, which can observe the gait motions
unobtrusively from a distance. In particularly, radar has be-
come of increased interest for human detection and monitoring
through walls [5] and in direct line-of-sight [6]. Electromag-
netic sensing is safe, privacy-preserving, and insensitive to
lighting conditions and clothing. Hence, it may provide an
efficient supplement to existing gait analysis systems.
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Prior work on using radar for analyzing gait motions has
been concerned with person identification [7]–[9], classifi-
cation of different arm motions [10], [11], and detection of
assistive walking devices [12]–[15]. Wang et al. [16] utilized
pulse-Doppler radar for extracting medically relevant parame-
ters such as the stride rate and walking velocity to characterize
a person’s gait. In [17], it was recently shown that, based on
real radar data, gait asymmetry can be detected with high
accuracy for four individuals with different diagnosed gait
disorders. However, most of these works assume that, prior
to classification, the radar data had already been collected and
is available for offline processing. Since the data collection
time is often preset, these measurements may take longer than
necessary to capture viable motion information. In general,
online gait analysis is desirable, where data collection is ceased
once we become certain of the underlying motion class.

Rendering quick and reliable decisions is important in many
real-time applications [18]. The idea goes back to the 1940s,
when Wald developed the sequential probability ratio test
(SPRT) [19]. The goal is to perform a hypothesis test with
as few samples as possible, while upper-bounding the error
probabilities. However, many practical applications suffer from
model inaccuracies. Accounting for these inaccuracies calls for
robust statistics, which has been an active field of research
over the last few decades. An overview of state-of-the-art
techniques can be found in, e.g., [20], [21].

In this work, we combine the ideas of robust statistics and
sequential analysis to propose an online approach for radar-
based gait analysis. To this end, the so-called radar micro-
Doppler signatures are analyzed and salient features are ex-
tracted, which quantify the (dis)similarity between consecutive
steps, and thus, gait (a)symmetry. The distributions of these
features under each gait class are obtained by means of kernel
density estimation. To account for the inaccuracies of the
density estimation, an uncertainty model is used to obtain a
set of most similar distributions. These distributions are then
employed to construct an SPRT to render a fast and reliable
decision about the underlying gait class. Based on real radar
data, we show that the proposed approach can achieve high
detection rates at reduced measurement durations.
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The remainder of the paper is organized as follows. Sec-
tion II details the problem formulation on detecting gait
asymmetry sequentially. Section III describes the methodology
to solve the given problem. Finally, Section IV presents
and discusses experimental results based on real radar data.
Section V concludes the paper.

II. PROBLEM FORMULATION

Radar back-scatterings of a person’s gait contain detailed
information on the lower limbs’ kinematics. Based on the
measured radar signals, we aim at detecting gait asymmetry,
which describes the differences between the left and right
leg motion. Assuming that a normal gait is symmetrical, and
differences between leg motions result in gait asymmetry, we
can formulate the problem as a statistical hypothesis test,
where

H0 : normal gait ,
H1 : asymmetric gait .

Typically, hypothesis testing is directly performed on the
observations. Since modelling the hypothesis test directly in
the domain of the observations is intractable, we formulate the
problem in the feature domain.

Let skn denote the k-th feature, describing the (dis)similarity
of two consecutive steps, at time instant n, where k =
1, . . . ,K and n ≥ 1. Assume that the features have a common,
time-invariant, distribution P , and let P0 and P1 denote the
distributions under hypotheses H0 and H1, respectively. The
two simple hypotheses can then be formulated as

H0 : P = P0 ,

H1 : P = P1 .
(1)

Since the distributions P0 and P1 are neither known nor can
be estimated accurately due to the limited amount of training
data, the uncertainty caused by the density estimation has to be
incorporated in the problem formulation. There exist various
ways to model distributional uncertainties like, e.g., the ε-
contamination model introduced by Huber [22] or Kassam’s
band model [23]. The former assumes that a small fraction of
the data is contaminated by an arbitrary unknown distribution,
whereas the latter assumes that the shape of density function
is approximately known, i.e., the true density is restricted to
lie in a specified band. By using such uncertainty models, the
simple hypothesis testing problem in Eq. (1) is converted to
the following composite hypothesis testing problem

H0 : P ∈ P0 ,

H1 : P ∈ P1 ,
(2)

where P0 and P1 denote the uncertainty sets under H0 and
H1, respectively. Hypothesis testing problems of this kind
are solved by finding a decision rule δ, which minimizes the
maximum possible type I and type II errors.

Besides robustness, the time delay until making a decision
plays a crucial role in many applications. In our case, we aim
to make a decision as quick as possible on the asymmetry
of the observed gait, so as to reduce patient inconvenience
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Fig. 1: Micro-Doppler signatures of a person walking on
a treadmill, where (a) shows normal walking and (b) an
asymmetric gait. The colors indicate the energy level in dB.

and limit any possible pain or strain that could be caused by
prolonged gait.

The need for quick decisions calls for sequential hypothesis
testing as introduced by Wald in the late 1940s [19]. Sequential
hypothesis tests should minimize the average number of used
samples while ensuring that the type I and type II errors do not
exceed specific bounds set by the designer. Besides a decision
rule, a stopping rule has to be found, since the sample size
used by a sequential hypothesis test is not known beforehand,
and is in fact a random variable.

In essence, based on sequentially observed features of the
radar signals, our goal is prompt detection of gait asymmetry
using robust sequential hypothesis testing, where type I and
type II error probabilities are restricted.

III. METHODOLOGY

A. Radar Micro-Doppler Signatures of Human Gait

Radar back-scatterings of human motions are typically
represented in the time-frequency domain, since the multi-
component signals are highly non-stationary. These Doppler
frequency vs. time representations reveal the so-called micro-
Doppler signatures, which are characteristic to the observed
motions [24]. In order to analyze the micro-Doppler signatures
in the joint-variable domain, the spectrogram is typically
calculated. As an example, Fig. 1 shows two spectrograms of a
person walking on a treadmill. The 4 s measurement of a nor-
mal gait in Fig. 1a reveals 6 steps, where the maximal Doppler
shift of approximately 350 Hz is caused by the swinging feet.
Fig. 1b shows the same person walking asymmetrically. It is
noted that, in this experiment, every second step signature has
a lower maximal Doppler frequency. This behavior relates to
a confined leg motion, where the observed radial velocity is
reduced compared to a normal step.

From the noise-reduced spectrogram, the envelope signal of
the micro-Doppler components is calculated using a thresh-
olding technique [14]. In Fig. 1, the envelope signals are
represented by a blue line. Next, individual micro-Doppler step
signatures are extracted as indicated by the black dashed box in
Fig. 1a. Here, the step durations are determined based on local
minima in the envelope signal. The individual micro-Doppler
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step signatures are considered up to the corresponding max-
imal observed Doppler shift. Finally, the step signatures are
normalized and re-sized to have the same dimensions. These
signatures are denoted by fn(x, y) ∈ [0, 1] for x = 1, . . . ,Mx

and y = 1, . . . ,My , where n denotes the step count.

B. Feature Extraction

Since we aim to detect differences between the right and
left leg motion, we consider two consecutive step signatures
at a time, i.e., fn−1(x, y) and fn(x, y), and calculate image-
based features to quantify the (dis)similarity of the steps.
Specifically, for each newly observed step signature fn(x, y),
we compute the k-th feature as skn = gk(fn−1(x, y), fn(x, y)),
where gk describes the k-th similarity measure between the
step signatures, and n ≥ 1 represents the step count. We
consider a subset of the similarity measures proposed in [17],
namely:

• correlation coefficient of full signature,
• correlation coefficient at high Doppler frequencies,
• correlation coefficient at medium Doppler frequencies,
• mean squared error,
• mean absolute deviation.

C. Robust Sequential Hypothesis Testing

In order to quickly detect gait asymmetry, we resort to
Wald’s famous SPRT [19]. Each feature is interpreted as a
time series and an SPRT is then applied to every feature to
decide whether we observe a symmetric or an asymmetric
gait. Thus, at each time instant n, we observe one realization
of the k-th feature, skn and compute the likelihood ratios for
all k = 1, . . . ,K, i.e.,

Λkn =
pk1(sk1 , . . . , s

k
n)

pk0(sk1 , . . . , s
k
n)

=

n∏
i=1

pk1(ski )

pk0(ski )
. (3)

For the sake of compactness, the argument of the densities is
dropped and should be clear from the context. We observe new
samples from feature k as long as the likelihood ratio Λkn stays
in some corridor defined by the upper and lower thresholds A
and B, respectively. Once the lower threshold is crossed, we
stop and decide in favor of the null hypothesis, and for the
alternative once the upper threshold is crossed. The decision
for feature k at time instant n is denoted by δkn. The run-length
of the test, i.e., the number of used samples, is hence given
by

τk : min{n ≥ 1 : Λkn 6∈ (A,B)} .
The thresholds A and B of the sequential test are determined
according to Wald [19]

A =
1− β
α

and B =
β

1− α ,
where α and β are the bounds for the type I and type II errors,
respectively. Though these thresholds are only asymptotically
optimal, i.e., when the bounds of the error probabilities tend
to zero, they are easy to compute and sufficient for a wide
range of applications.
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Fig. 2: Example of density functions and the corresponding
log-likelihood ratios.

Since the probability density functions pk0 and pk1 are not
known, they have to be estimated from some training data.
For every feature k = 1, . . . ,K, these densities have to be
estimated under both hypotheses, which can, e.g., be done
by the use of kernel density estimators. In theory, we can
then replace the true densities in the likelihood ratio by their
estimates. We remark that due to the limited amount of training
data the estimates can become very poor in the tail regions of
the densities such that the estimated likelihood ratio breaks
down. An example of such behavior is depicted in Fig. 2.
One can see that the non-robust log-likelihood ratio takes
extremely small/large values in the regions where the densities
have their tails. Once an observation falls into one of these
regions, the test is forced to stop and make a decision. Since
this an unintended behavior of the test, we use Kassam’s band
model [23] to model deviations from the estimated densities.
More precisely, the sets of distributions for both hypotheses
are given by

Pki = {p : pk
i
≤ p ≤ pki ,

∫
p(x)dx = 1} , (4)

where i = 0, 1, and k = 1, . . . ,K. The band model is
a very general uncertainty model, since it includes the ε-
contamination model, initially used by Huber [22], as a special
case for pki →∞ [25]. The choice of pk

i
and pki is presented

in Section IV-B.
In order to obtain a test which is insensitive to distributional

uncertainties, one has to find the pair of distributions of the
form in Eq. (4), which minimizes all f -divergences, generally
referred to as least favorable densities (LFDs). An implicit
characterization of the LFDs is given by [25]

qk0 = min{pk0 ,max{c0(αqk0 + qk1 )}, pk
0
}

qk1 = min{pk1 ,max{c1(qk0 + αqk1 )}, pk
1
}

(5)

for some α ≥ 0 and some c0, c1 ∈ [0, 1
α ]. The LFDs are then

computed by the iterative algorithm presented in [25].
To obtain a robust SPRT, we replace the densities pk0 and

pk1 in Eq. (3) by the LFDs qk0 and qk1 . This results in a log-
likelihood ratio which downweights the influence of certain
observations, i.e., a single observation cannot force the test to
stop directly. An example of the estimated densities and LFDs
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is shown in Fig. 2a, and the corresponding log-likelihood ratios
are depicted in Fig. 2b.

In summary, our proposed method works as follows: First,
the densities pki for i = 0, 1, and k = 1, . . . ,K are estimated
on a set of training data using a kernel density estimator. Next,
we compute a pair of LFDs for each feature. Based on these
LFDs, we perform one robust SPRT per feature. Then, the
outcomes of the K tests are fused using a majority voting
scheme, i.e.,

δ = arg max
i

{ K∑
k=1

1{δk=i}

}
,

where 1{A} is the indicator function of event A. Since we use
K different SPRTs in parallel, the number of samples which
are required to make a final decision is the one of the slowest
SPRT, i.e.,

τ = max{τ1, . . . , τK} .

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The experiments were conducted at the Locomotion Lab-
oratory at Technische Universität Darmstadt, Germany (no
absorbers). In total, 19 healthy individuals (5 female, 14 male,
aged 28.9 ± 7.5) were asked to walk on a treadmill for
two minutes at two different speeds (0.7 m/s and 1.1 m/s).
The experiments were approved by the Technische Universität
Darmstadt ethics commission and all volunteers provided writ-
ten consent. The experimental radar data were collected using
a 24 GHz continuous-wave radar [26], which was positioned
at approximately knee-height (0.58 m above treadmill surface)
and 1.75 m in front of or behind the test subject. In order
to enforce asymmetric gait, the angle of deflection of the
right knee was confined by an adjustable orthosis. Besides
no confinement, which refers to normal, symmetric gait, a
confinement angle of 10° was investigated, where the angle
describes the extent to which the knee could be bent. Since
wearing the orthosis changes the surface of the leg, and thus,
its reflection characteristics, a second orthosis was worn on
the left leg to ensure comparability between the radar back-
scatterings from the left and right leg.

For each individual, a set of 16 measurements with a length
of 25 s is considered, of which 8 measurements refer to normal
walking (no confinement), and the others represent asymmetric
gait. Thus, in total, 304 measurements are available, half of
which were recorded with a front view (toward) and the other
half with a back view (away) on the person. To assess the
performance of the proposed method, we apply 10-fold cross
validation (10FCV) as well as leave-one-subject-out cross
validation (LOSOCV). The former randomly splits the data
into 10 folds using stratified sampling with respect to the
gait classes to ensure that each fold is representative for the
whole dataset. Then, each fold is used for testing once, and the
remainder of the data is used for training. The latter performs
the splits with respect to the person labels, where data of one
subject is kept for testing purposes and the remainder is used

TABLE I: Type I and type II error using the proposed
algorithm

10FCV LOSOCV

Set Type I (%) Type II (%) Type I (%) Type II (%)

toward 1.63 9.84 5.92 21.71
away 3.65 3.90 7.24 10.53
both 3.12 7.08 6.91 15.79

TABLE II: Average measurement duration in units of steps
(and seconds).

Proposed method Entire measurement

Set 10FCV LOSOCV

toward 6.12 (≈ 3.4 s) 6.19 (≈ 3.4 s) 45.2 (25.0 s)
away 17.22 (≈ 9.7 s) 16.16 (≈ 9.1 s) 44.4 (25.0 s)
both 7.85 (≈ 4.4 s) 7.50 (≈ 4.2 s) 44.8 (25.0 s)

for training. As such, this procedure gives an indication on
how well the method would perform on a new test subject.

B. Sequential Detection

Before the results of the proposed algorithm can be pre-
sented, the setup has to be described in detail. We estimate
the densities under H0 and H1 utilizing a kernel density
estimator with a Gaussian kernel. The upper and lower bounds
used in the band model can, e.g., be set by using confidence
intervals. We set the upper bound of the band to infinity and
the lower bound to (1 − ε)p̂ki , where p̂ki is the estimated
density of the k-th feature under hypothesis Hi. This results
in an ε-contamination model with nominal distribution p̂ki and
contamination rate ε. In the following, the contamination rate
is set to 0.2. The upper bounds for the type I and type II errors
are set to 10 %. Since we only have pre-recorded data of 25 s
per measurement, it can happen that the likelihood ratio of
one SPRT is still between the two thresholds A and B once
the last sample is reached. In this case, we decide for the
hypothesis which is more likely, i.e., we decide for H0 and
H1 for negative and positive log-likelihood ratios, respectively.

The error probabilities of the proposed algorithm are sum-
marized in Table I. One can see, that for the 10FCV both error
probabilities are below the pre-specified 10 % bound. When
using LOSOCV, the type I error is below the bound for all
datasets. The type II error is only close to the bound for the
’away’ scenario, whereas it is far beyond the bound for the
other two datasets. In Table II, the average run-length is given.
We can see, that on average only a fraction of the respective
measurements is used to make a decision.

C. Comparison to Classifier

Finally, we compare the above results to those of a clas-
sifier, that utilizes the entire measurements. Following the
approach in [15], we obtain the similarity measures based
on averaged micro-Doppler stride signatures, i.e., sk =
gk(L(x, y), R(x, y)), where L(x, y) and R(x, y) denote the
average micro-Doppler stride signature of the left and right
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TABLE III: Type I and type II error using the NN classifier.

10FCV LOSOCV

Set Type I (%) Type II (%) Type I (%) Type II (%)

toward 2.63 2.63 3.29 3.95
away 1.97 1.97 3.29 2.63
both 1.97 1.97 2.96 3.95

leg, respectively. Thus, for each measurement, we obtain only
one set of features sk, k = 1, . . . ,K. Table III shows the
results using K = 5 features per measurement and a nearest
neighbor (NN) classifier. We observe that, given the limited
amount of data, the type I error rates are comparable to those
obtained by the proposed method. However, the type II errors
are considerably smaller for both, 10FCV and LOSOCV,
compared to the proposed method. This indicates that the
proposed features hold some descriptiveness in the higher
dimensions, which are inaccessible by the SPRT.

D. Discussion

Though the proposed method has large type II errors, while
having acceptable type I errors, the average measurement time
is reduced by up to a factor of 5. The higher type II errors can
be explained as follows. First, only a limited amount of data
was available to learn the distributions, which leads to higher
type II errors. Second, the NN classifier, which was used
for benchmark purposes, directly works in the K-dimensional
feature space, whereas our proposed method works in the one-
dimensional space and performs a majority vote on the K
decisions afterwards. Hence, even if the two classes are easily
separable in a high-dimensional space, it may be very hard to
separate them using the marginal, i.e., one-dimensional, distri-
butions of the features. Future research should be concerned
with finding more descriptive features that are possibly even
specific for particular gait disorders. Moreover, the proposed
method can be extended, such that it uses the entire feature
space instead of the marginal distributions of the features.

V. CONCLUSION

We presented an approach for online radar-based gait analy-
sis utilizing robust statistics and sequential analysis. Based on
real radar-data of 19 individuals, we aimed at detecting gait
asymmetry as quickly as possible utilizing streaming-in data.
The proposed approach was assessed based on the type I and
type II errors, as well as the required average measurement
time. Based on the limited data at hand, we showed that
high detection rates can by achieved at reduced measurements
times. The obtained results were compared to the performance
of an NN classifier, which worked with features based on the
entire measurements.
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