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Abstract—Independent component analysis (ICA) and dictio-
nary learning (DL) methods are widely used to analyse resting
state functional Magnetic Resonance Imaging (rs-fMRI) in multi-
subject studies. These methods aim at decomposing the multi-
subject data into common spatial abundance maps and their
related temporal signatures.

We are interested here in such a decomposition for a single-
subject rs-fMRI dataset. The above-mentioned methods often fail
in this case because the problem becomes too ill-posed, requiring
the use of additional prior information and the design of novel
regularising constraints. The poor resolution of rs-fMRI data
is an additional source of difficulty, yielding noisy and blurry
spatial maps.

In this paper, we propose a new DL formulation adapted to
the unique subject by integrating high-resolution (HR) spatial
information to constrain single-subject data unmixing. HR in-
formation is provided by the registration of an anatomical atlas
on the data set. We show on a quasi-real dataset from mice,
the benefit of using an HR spatial segmentation map in the
decomposition of low-resolution rs-fMRI.

Index Terms—Dictionary Learning, resting state fMRI, single-
subject rs-fMRI unmixing, high-resolution anatomical atlas.

I. INTRODUCTION

In recent years, resting state functional Magnetic Resonance
Imaging (rs-fMRI) has been widely used for studying brain
functional connectivity [1]. Rs-fMRI allows the observation
of changes in cerebral activity by analysing the blood-oxygen-
level-dependent (BOLD) signal [2]. At rest, only spontaneous
activity is measured and a set of anatomical regions with the
same fluctuations are considered part of a common network. A
certain number of resting state networks have been examined
in the mouse brain [3] and the human brain [1], [4]. Co-
activation patterns are studied to determine the differences
between healthy and pathological subjects using metrics such
as correlation maps. Detecting precisely the different networks
(localisation in the brain and temporal activity) is crucial for
understanding a neurological disorder. In rs-fMRI, there is a
compromise between the spatial resolution, and the temporal
resolution which must be sufficiently fine to capture the
networks activity fluctuations over time (these network activity

fluctuations are called timecourses). As a consequence, rs-
fMRI has a quite low spatial resolution, inducing a mixture of
network contributions within the same voxel.

Unmixing timecourses linked to different networks leads to
the following decomposition model:

Y ' UA, (1)

where Y ∈ RN×P is the rs-fMRI data, N is the length of time-
courses , P is the number of voxels in the brain, U ∈ RN×R
is the matrix containing the temporal signatures where R is the
number of components (networks). Matrix A ∈ RR×P is the
abundance matrix coding the fraction of the R components
contributions at each voxel. The estimation of A and U is
a typical blind source separation problem. In neuroscience,
spatial Independent Component Analysis (ICA) [5]–[7] has
been extensively used to estimate a spatial basis A, whose
rows correspond to spatially independent sources, and the
corresponding U matrix. Recently, DL methods have proven
to be promising in rs-fMRI analysis [8]–[10]. They consist in
seeking sparse spatial components instead of independent ones
with a DL formulation:

min
A,U

1

2
‖Y −UA ‖2F + λ||A||1. (2)

This optimisation problem is not convex, but bi-convex and
requires a good initialisation for A or U to obtain a relevant
solution.

Methods for estimating spatial components and their tem-
poral signatures are frequently used to conduct group analysis
that aims at extracting networks expressed in a group of
individuals. In group analysis, all the individuals are first
registered to a common anatomical template. Registration to a
template also allows the use of an associated atlas (anatomical
segmentation map) to identify the anatomical regions involved
in the different functional networks. This is particularly useful
for identifying networks in ICA where the number of spatial
components is difficult to set. Similarly, the atlas can be used
to build a good initialisation of A in DL algorithms.
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Detecting common networks through group analysis is
obviously easier than single-subject analysis, because of the
redundancy of information present in group data. In the single-
subject case, the rs-fMRI data of a unique subject must be
decomposed according to model (1). In this case, ill-posedness
is even more pronounced than in group analysis, requiring
additional prior information and regularisation.

In group analysis, registration of all individual fMRI-data to
a common template requires the fMRI signals to be interpo-
lated. This is detrimental to resolution and yields loss of infor-
mation, which may become critical in the single-subject case.
Contrary to the standard procedure used in group analysis, we
thus perform atlas-to-subject registration rather than subjects-
to-atlas warping. A careful registration procedure (described
in section II-D) is devised, to map a high-resolution (HR)
anatomical atlas on the low-resolution rs-fMRI signal. This
procedure preserves both the fMRI signal and the (high) res-
olution of the atlas anatomical regions. For traditional source
separation methods, the number of components R is fixed
a priori arbitrarly. The estimated components then constitute
either functional networks or noise components that must be
filtered a posteriori. In our approach, we propose to work at
the scale of the anatomical regions extracted from the finely
segmented atlas, and we assume that functional networks
are composed of small anatomical regions. In this case R
represents the number of regions of the HR segmentation map.
The contribution of the HR segmentation map in the unmixing
method is twofold. First, it is used to provide an accurate
initialisation for the sparse abundance matrix A, based on
the fractions of anatomical regions present in each voxel.
Second, the HR atlas is also used as an important regulariser
in the DL formulation, constraining the sparse structure of
the abundance matrix A during optimization. The proposed
single-subject DL formulation is presented in Section 2. In
Section 3, the unmixing approach is assessed on a semi-real
rs-fMRI dataset (with ground truth) obtained on a mouse. The
experimental results clearly illustrate the benefit of integrating
an HR anatomical atlas in the single-subject case.

II. DICTIONARY LEARNING FORMULATION

In this section, the method followed to find timecourses
related to anatomical regions is presented.

A. Optimisation problem

Given the observation model (1), the following minimisation
problem:

min
A,U

1

2
‖Y −UA ‖2F (3)

does not have a unique solution because of the joint estimation
of A and U, and the ill-posedness of the problem. In order to
restrain the number of solutions, we introduce some standard
constraints on matrix A such as the positivity constraint
A ∈ R+ and the sum-to-one constraint

∑
A[., i] = 1, with

i = 1 : P , as these are the proportions voxel by voxel. The
form of matrix A is also constrained by the extra information
from the HR segmentation obtained by the projection of the

atlas: we know precisely which anatomical regions contribute
to a given voxel, i.e. present a non zero proportion at this
voxel. The unmixing problem is recast as:

min
A,U

1

2
‖Y−UA‖2F+

µσ
2
‖U‖2F+IR+(A)+IÃ(A)+IS(A), (4)

where the first term is the data fidelity term, the second term
is a Tikhonov regularisation controlled by parameter µσ set
to 10−4 to prevent bad conditioning(see section II-B). The
third term is a positivity constraint where IR+(A) =∞ if at
least one of the elements of A is negative, and 0 otherwise.
The fourth term IÃ(A) is the indicator function on the set
of matrices having a structure similar to matrix Ã. This is a
binary matrix where element (Ã)r,i = 1 if the rth projected
high resolution anatomical region of the atlas intersects the ith

low resolution voxel, and 0 otherwise. This gives IÃ(A) =∞
if at least one element of A is non-zero while it is zero in Ã,
and 0 otherwise. The last term in eq. (4) codes the sum-to-one
constraint on each column of matrix A. IS(A) = ∞ if at
least one column of A does not sum to one, and 0 otherwise.

Estimating jointly U and A in eq. (4) is a typical problem
of dictionary learning. But, unlike conventional DL algorithms
(eq. (2)), there is no sparsity regularisation term in the form of
a `1 penalty: it is the term IÃ(A) which enforces the sparse
decomposition of each voxel. This underlines the importance
of the HR segmentation map used to guide the fMRI data un-
mixing. A classical way to solve the joint estimation problem
is to optimise alternatively the cost function eq. (4) along U
and A.

B. Timecourse matrix estimation

Considering A is fixed, problem (4) becomes:

min
U

1

2
‖Y −UA ‖2F +

µσ
2
‖U‖2F . (5)

Here the Tikhonov regularisation term µσ‖U‖22 is not used to
enforce temporal smoothness of columns of U but to improve
the conditioning of the problem (3). In our case, µσ is set to
10−4 to prevent collinearity between columns of A without
increasing timecourses smoothing. Such a situation may occur
when two very thin neighbouring regions of the segmentation
map are projected on the fMRI data. Since the fMRI data are
of low spatial resolution, these two regions may project on
exactly the same voxels, yielding collinearity. The solution of
(5) is the ridge estimator defined by:

Û = YAT (AAT + µσIR)
−1, (6)

where IR is the R×R identity matrix.

C. Abundance matrix estimation

Consider that U is fixed, then problem eq. (4) becomes
minA f(A) where:

f(A)=
1

2
‖Y −UA‖2F+IR+(A)+IÃ(A)+IS(A). (7)
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Note that this function is separable according to the voxels
i ∈ {1,. . . , P} which leads to: minai f(ai), with:

f(ai)=
1

2
‖yi −Uai‖2F+IR+(ai)+Iãi

(ai)+IS(ai), (8)

where ai is a column vector from the matrix A. The set of all
the vectors with a structure similar to ai is given by ãi, where
ãi is a column of Ã. The regularisation terms in eq. (8) can
be summarized as g(ai) = IR+(ai)∩ãi(ai)∩S(ai).

The convexity of the set R+∩ Ã∩S can be easily verified.
Let us notice that eq. (8) belongs to the class of problems for
which the proximal gradient method can be used. Different
algorithms are available, for example, projected gradient, also
known as iterative shrinkage-thresholding algorithm (ISTA) or
FISTA (Fast ISTA) [11]. FISTA was preferred for its rapid
convergence: its implementation is given in Algorithm 1.

1 for k ← 1 to proxsteps do
2 a

(k)
i = proxg(ω

(k) − λ∇f(ω(k)))

3 t(k+1) =
1+

√
1+4(t(k))

2

2

4 ω(k+1) = a
(k)
i +

(
t(k)−1
t(k+1)

)
(a

(k)
i − a

(k−1)
i )

5 end
Algorithm 1: FISTA algorithm for estimating columns
ai of matrix A.

In algorithm 1, ∇f(ai) is the gradient of f(ai), given by
UT (Uai−yi). The step size λ is set equal to the inverse of the
Lipschitz constant of ∇f(ai) i.e. 1/L, where L = ‖UTU‖F ,
t(k+1) is an auxillary variable which helps in the fast conver-
gence of FISTA, ω calculates intermediate values based on
a special linear combination of the last two points and prox
refers to the proximal operator [11]. In our case, the proximal
operator is just the projection of ai in the positive orthant,
with the vector normalised to-sum-to-one. This projection also
forces the solution to be non-zero only at positions where an
atlas region projects on the voxel, with the Iã constraint. The
proximal operator of the function g is:

proxg(y) = argmin
x∈R+∩ãi∩S

‖x− y‖2 = PR+∩ãi∩S(y), (9)

where P is the projection operator on the set R+ ∩ ãi ∩ S.
The orthogonal projection of a vector y ∈ RR on R+ ∩ ãi ∩
S is obtained using the projection onto convex sets (POCS)
method [12]. POCS algorithm alternates projection onto the
simplex R+ ∩S and projection onto the set of vectors having
the same structure as ãi. Only a few iterations are required
for convergence of the POCS algorithm.

Convergence towards a global minimum of DL algorithms
cannot be proven. In practice, a good initialisation of A and
the presence of pure pixels (as in remote sensing application)
in each region guarantee a good joint estimation of U and A.

D. Initialisation of the algorithm and atlas registration

A good initialisation of A is required: to this end, infor-
mation from the HR segmentation map is used. As already

explained, the HR atlas is registered to the fMRI data. Note
that instead of warping the atlas to the fMRI data, we register
the atlas to the structural (anatomical) MR image (which
is itself registered to the fMRI data), since structural MRI
contains more spatial information than fMRI data. A problem
we encountered is that the atlas has a much higher spatial
resolution than the fMRI or structural MRI data (up to a
factor of 20 in one of the dimensions). This large difference
in resolution is not properly handled by the deformable regis-
tration methods used in medical imaging such as FLIRT [13]
or ANTS [14]. To overcome this problem, the resolutions of
fMRI and anatomic MRI data were artificially increased by
subdividing their voxels in the 3 spatial dimensions until the
same order of magnitude as the atlas resolution is achieved.
A diffeomorphic deformable registration of the atlas to the
resolution-augmented structural MRI is then performed with
ANTS [14]. It provides an accurate projection of the HR atlas
on the fMRI data, preserving the structure of thin regions.

Finally, DL is performed at the (low) resolution of the initial
fMRI data Y ∈ RN×P . The initial abundance matrix A(0) ∈
RR×P is constructed as follows. Let’s say that each voxel i ∈
{1,. . . , P} was subdivided into J high resolution voxels during
the artificial augmentation step. For each voxel i of Y and all
regions r ∈ {1, . . . , R}, the element (A(0))r,i will contain the
proportion of high resolution voxels in voxel i, occupied by
region r. If region r is not transported to the low-resolution
voxel i then (A(0))r,i = 0.

III. APPLICATION AND RESULTS

A. Data and atlas

In order to test the proposed unmixing algorithm, we use
data acquired in a preclinical study with an Alzheimer mice
model. In this work, the data consist of a 4D rs-fMRI and
a 3D anatomical image registered to the rs-fMRI image. The
anatomical image has a dimension of 256 × 256 × 34 and
0.08299×0.07812×0.4 mm resolution. Functional image has
a dimension of 147×87×27×500 with 0.1445×0.2299×0.5
mm spatial resolution and 2s for the time resolution.

For initialising the abundance matrix A(0) (see Section
II-D), the mouse Allen Brain Atlas (ABA) is used [15].
ABA provides a 3D MRI volume (template) and a structural
annotation volume, both at 25× 25× 25 µm resolution. The
annotations consist of an HR segmentation map that identifies
the different anatomical structures in the mouse brain.

B. Atlas registration and fMRI preprocessing

The classical fMRI preprocessing pipeline of slice timing
and co-registration is applied on the rs-fMRI data set. The
next step consists in registering the spatially well-resolved
ABA template to the artificially augmented anatomical im-
age (which is perfectly aligned with the rs-fMRI data). The
registration of the ABA mouse template to the anatomical
images provides the deformation field that is applied to the HR
segmentation map to transport the different labelled regions
on the augmented rs-fMRI data. The spatial resolution of rs-
fMRI data is augmented by subdividing each original voxel
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into 3 × 6 × 2 high resolution voxels. The registration of
the anatomical image to the augmented rs-fMRI leads to an
increase in its own resolution.

Confounding signals are regressed before analysing the
data. A principal component analysis enables the isolation of
hypersignal due to the presence of liquid in ventricles and of
perturbations due to the interleaved acquisition. Regressed rs-
fMRI data are then temporally standardised and used in the
following processing.

C. Validation data set

For validating the contribution of the HR segmentation map
in unmixing the single-subject fMRI data, a set of synthetic
temporal signatures are introduced in seven small regions
arbitrarily chosen in the prefrontal cortex. A first synthetic
signal is obtained by averaging the signals of the regions
ACAd1 and ACAd5 which were already highly correlated in
the real data. This signal is then modified to create signals with
arbitrary high correaltion or anti-correlation for the regions
ACAd1, ACAd5, ACAd6a, ACAv1, ACAv5, ORBl1 and PL1
(see blue lines in plots of figure 2). These correlations don’t
have a physical significance, they are used as a ground truth
for evaluation of the proposed algorithm performances. Their
correlations are presented in Table I.

ACAd1 ACAd5 ACAd6a ACAv1 ACAv5 PL1 ORBl1
ACAd1 1.00 0.84 0.92 0.67 0.69 -0.45 -0.59
ACAd5 0.84 1.00 0.92 0.67 0.69 -0.47 -0.60

ACAd6a 0.92 0.92 1.00 0.66 0.67 -0.46 -0.58
ACAv1 0.67 0.67 0.66 1.00 0.88 -0.59 -0.82
ACAv5 0.69 0.69 0.67 0.88 1.00 -0.60 -0.82

PL1 -0.45 -0.47 -0.46 -0.59 -0.60 1.00 0.74
ORBl1 -0.59 -0.60 -0.58 -0.82 -0.82 0.74 1.00

TABLE I: Correlation values between the seven synthetic
temporal signatures introduced in the real data set.

Synthetic signals are introduced in the standardized artifi-
cially augmented fMRI data, which are then reduced to the
initial low resolution. These synthetic signals are thus mixed
with the real signals in the voxels containing a portion of the
seven selected regions.

D. Data unmixing results

The proposed DL method guided by the HR segmentation
map is applied to the validation data set. Figure 1a shows
the correlation between the temporal signatures of the seven
synthetic regions and their neighbours in the prefrontal cortex
after 500 iterations for estimating A and U. Empirically, the
algorithm allows convergence to an acceptable solution for
A and U. After 500 iterations, the gain on minimization of
problem (4) is very low (< 10−3). For the estimation of A, the
FISTA algorithm requires a stopping criterion or a maximum
number of iterations. In our implementation, FISTA is stopped
when ‖a(k−1)i − a

(k)
i ‖ < 10−8 or k > 100.

To highlight the crucial contribution of a well-registered
HR segmentation map, we have applied the standard ANTS
registration algorithm to the validation dataset, without han-
dling the augmentation of resolution. The ABA template is

(a) DL algorithm guided by HR segmentation map

(b) Without HR registration

Fig. 1: Correlations in the prefrontal cortex. The lower tri-
angular matrix contains estimated correlation and the upper
triangular matrix contains the true ones for the seven synthetic
signatures. Diagonal elements are set to zero.

thus directly registered on the low-resolution anatomical image
using ANTS (initialisation of A(0) is straightforward in this
case). Figure 1b shows the correlation matrix obtained in this
case, after 500 iterations. The inaccurate initial projection of
the different anatomical structures on the low resolution fMRI
data yields a poor initialization A(0) for the abundance matrix.
This results in a correlation matrix in figure 1b where the
estimated correlations are far away from the ground truth.

Figure 2 shows the synthetic signals introduced (in blue),
the estimated timecourses with information from the HR atlas
(in dashed red) and the estimated timecourses without the con-
tribution of the information from the HR atlas (in green). The
mean square error (MSE) of the estimated timecourses have
been shown on the plots. It can be seen that the MSE(HR),
which contains information from the high resolution atlas,
have values significantly lower than the MSE without the extra
information.
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Fig. 2: The plot shows samples corresponding to the first 500
seconds of the synthetic signals (in blue) and their corre-
sponding estimated timecourses using HR altas information
(in dashed red) and without using HR atlas information (in
green).

E. Discussion

Unmixing algorithms are often sensitive to the assumption
of pure pixels (i.e. each region has an abundance of 1 in at
least one pixel of the image). Since the HR ABA template
provides a (very) fine segmentation of thin brain structures,
this assumption is not guaranteed once the regions are pro-
jected onto the low resolution fMRI data. In order to challenge
this hypothesis, additional synthetic data were simulated. In a
first case, a region was completely included in another region
and in a second case, a region was superimposed on two or
more regions. In the first case, it was difficult to correctly
estimate the timecourse of the region included in the other (and
therefore its abundance). In the second case, the timecourse is
better estimated and so is its abundance. In practice, the first
case should not occur in fMRI data, which ensures that we can

correctly estimate both the abundances and the timecourses.

IV. CONCLUSION

The choice to register the HR atlas to the fMRI data
for preserving the timecourses from any interpolation led us
to introduce new constraints in the DL formulation. These
constraints carefully exploit the HR segmentation map to
initialize and estimate the abundance matrix. This unmixing
method can be used for other applications, such as remote
sensing or astronomy, as long as it is possible to register an
HR segmentation map on the low-resolution data set. The next
step is the timecourses analysis that can be carried out by
multifractal [16] or spectral analysis.
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