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Abstract—Recent trends in the field of eye-gaze tracking
have been shifting towards the estimation of gaze direction in
everyday life settings, hence calling for methods that alleviate
the constraints typically associated with existing methods, which
limit their applicability in less controlled conditions. In this paper,
we propose a method for eye-gaze estimation as a function of both
eye and head pose components, without requiring prolonged user-
cooperation prior to gaze estimation. Our method exploits the
trajectories of salient feature trackers spread randomly over the
face region for the estimation of the head rotation angles, which
are subsequently used to drive a spherical eye-in-head rotation
model that compensates for the changes in eye region appearance
under head rotation. We investigate the validity of the proposed
method on a publicly available data set.

Index Terms—Eye-gaze tracking, pervasive, passive

I. INTRODUCTION

Recent trends in the field of eye-gaze tracking have been
shifting towards the estimation of gaze direction in everyday
life settings, often referred to as in the wild [1]. This is
being motivated by the profusion of mobile devices and a
growing interest in capturing the natural user behaviour in
less constrained scenarios outside the research laboratory. This
emergence of pervasive eye-gaze tracking, as originally coined
by Bulling et al. [1], calls for methods that allow for tracking
under less controlled conditions, such as by allowing natural
head and face movement during tracking, reduced calibration
to allow for situations that do not permit prolonged user
cooperation, and the estimation of eye-gaze on mobile devices
comprising integrated imaging hardware without requiring
further hardware modification [2].

Most research effort over past years has been dedicated
towards the development of eye-gaze tracking methods that op-
erate under controlled conditions [3], whereby the illumination
is controlled by the projection of infra-red illumination [4], the
head movement is constrained to a small volume [5]–[7], and
calibration [5], [8], [9] or the collection of a training data set
[6], [10] may be carried out as required. Such conditions limit
the applicability of these methods within the less controlled
settings associated with pervasive eye-gaze tracking [2].

In light of these limitations, we aim to address the chal-
lenges of pervasive eye-gaze tracking related to the estimation
of gaze under natural head and face movement, reduced

calibration prior to gaze estimation, and the use of consumer-
grade cameras having a wider field-of-view, such as webcams,
in which the eye regions appear at lower resolution. Our
method is based upon our definition of the Spherical Eye-
in-head Rotation (SphERo) model [11] to compensate for
changes in appearance under head rotation, driven by the head
rotation angles estimated earlier. The estimation of head pose
exploits the trajectories of salient feature points spread ran-
domly over the face region, in comparison with other methods
in the literature [12] that require prior training or accurate
initialisation of specific facial features for model-fitting. We
combine shape and motion factorisation and particle filtering
to estimate the head pose, with Kalman filtering in order to
handle non-rigid face movement during tracking. The final
gaze estimate is defined as a function of the eye and head
pose components.

This paper is organised as follows. Section II outlines
the overarching idea of the proposed algorithm, followed
by the specific details in Section III and subsequently the
implementation details in Section IV. The experimental results
are presented and discussed in Section V while Section VI
draws the final remarks and concludes the paper.

II. OVERVIEW OF THE ALGORITHM

We propose a method for the estimation of eye-gaze that
combines our work for head [13] and eye [11] pose estimation.
We estimate the head pose under non-rigid face movement
in real-time, by exploiting the sparse 3-dimensional shape of
the face recovered by shape and motion factorisation [13].
The 3-dimensional shape is recovered from the trajectories of
salient feature points randomly distributed over the face region,
rather than making use of specific face landmarks that may
be susceptible to surface distortion and self-occlusion [14].
The contribution of feature points undergoing non-rigid face
movement to the estimation of head pose is reduced, based on
residual values computed by a Kalman filter that capture the
discrepancy between the recovered 3-dimensional shape and a
rigid shape estimate produced by the Kalman filter. Driven by
the estimated head rotation angles, our SphERo model [11]
subsequently compensates for changes in eye region appear-
ance due to head rotation, resulting in a transformed image
with known head and eye pose. This permits the estimation of
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Fig. 1: Main steps of the proposed method carried out on every image frame.

eyeball rotation in a newly observed eye region image, based
on the iris displacement in both the transformed and observed
eye region images. The initialisation of the SphERo model
requires only a brief calibration, whereby the user is requested
to hold a frontal and upright head pose and a frontal eye pose.
Figure 1 summarises the stages of the proposed method.

III. DETAILS OF THE ALGORITHM

Frontal eye and head poses are initially detected from the
relative distances between the face features, permitting the
extraction of the frontal eye regions, fxo

, where xo denotes
the iris centre coordinates. At this instance, the head yaw
and pitch angles, (θ, φ), together with the eyeball yaw and
pitch angles, (α, β), are initialised to zero, where the torsional
component of the eyeball rotation is assumed not to contribute
to gaze estimation [15] and hence removed for simplicity. The
pixels x = (x, y) in the reference images fxo

are projected
orthographically to positions u = (u, v) onto the surface of
the SphERo model. This is illustrated in Figures 2(a) and 2(b).
In order to compensate for changes in eye region appearance
under head rotation the SphERo model is driven by the head
pose, which needs to be estimated in advance.

The estimation of the head rotation angles exploits the se-
quential factorisation theory for shape and motion recovery of
Morita and Kanade [16], in order to recover the 3-dimensional
shape, Sk, from the trajectories of P salient feature points
initialised over the face region. The image positions of the
feature points, (xk,p, yk,p) | p = 1,. . .,P , are updated at
every time step k, where each time step corresponds with
the acquisition of a new image frame. Our aim is to use
this information to detect features points undergoing non-rigid
face movement, after it was experimentally found that such
feature points tend to be characterised by a larger error in
the estimated 3-dimensional shape, Sk. Since the method of
Morita and Kanade [16] operates under a rigid-object assump-
tion, Kalman filtering is employed to provide a notion of the
difference between the measured shape, Sk, and a static shape
estimate, ξk, produced by the Kalman filter algorithm. In this
regard, of particular interest is the measurement residual, ỹk

of size P×1, computed during the update stage of the Kalman
filter [17]. The measurement residual provides an indication
of the discrepancy between the actual measurement, zk = Sk,
and the measurement prediction of the Kalman filter [17].
The actual and predicted measurement values of the tracked
feature points residing on rigid surface regions are expected

to be in agreement, and hence the corresponding residual
values remain close to zero. Feature points that undergo non-
rigid face movement, on the other hand, are expected to
display larger discrepancy between the actual and predicted
measurement values and are, therefore, characterised by higher
residual values. We capture this discrepancy by computing
the variance of the measurement residual values over a time
window of length, L, for each feature point as follows,

σ2
k,p =

1

L

k∑
j=(k−L)

ỹ2j,p p = 1, . . . , P (1)

which variance will be exploited for the estimation of head
pose by particle filtering, as will be explained shortly.

In order to estimate the head yaw and pitch angles by par-
ticle filtering, a set of N particles is generated as hypotheses
of state sk = (θk, φk) with known probability density function
p(sk). A rotation transformation is subsequently applied to the
3-dimensional rigid shape estimate produced by the Kalman
filter, ξk, according to every particle hypothesis. The re-
projection of each rotated shape inside the image space assigns
a set of candidate coordinates, Ck(p) = {(c(n)k,p, d

(n)
k,p)} |

n = 1, . . . , N , to each feature of interest, p. This permits
the calculation of the horizontal and vertical image distances,
D

(n)
k (x), between the tracked feature positions, xk,p, and

corresponding candidates, c(n)k,p . We define the likelihood model
of the particle filter based on these distances, by a multivariate
normal distribution having mean, µ = 0, and covariance, Σk,
as follows,

p(xk,p|1,...,P | s
(n)
k ) = Ae−

1
2 (D(n)

k (x))T Σ−1
k (D(n)

k (x))

where, A = (2π)−
P
2 |Σk|−

1
2

(2)

for the head yaw and similarly for the head pitch angles. In
Equation 2, P denotes the dimensionality of the measurement
vector, while the pre-computed variances, σ2

k,p | p = 1, . . . , P ,
populate the diagonal entries of the P×P covariance matrix,
Σk, assuming feature error independence. Based on the like-
lihood measures in Equation 2, each particle is subsequently
assigned weights denoting the likelihood of representing the
true head yaw and pitch angles. Normalisation of these weights
permits the estimation of state, sk = (θk, φk), as a weighted
average of the particle set for the yaw and pitch angles
respectively. It is worth noting that head pose estimation is
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Fig. 2: The SphERo model rotates face features inside a frontal reference image, fxo
, by a head yaw angle, θ, around a circular

trajectory of radius R (a), and a head pitch angle, φ, around the nose region (b). The change in appearance due to the spherical
shape of the eyeballs is accounted for by the spherical trajectory of radius, r (c).

based upon the shape rather than the photometric information
of the object of interest, to reduce the susceptibility of the
method to intensity variations and repetitive skin texture.

The reference eye images projected onto the model are then
rotated according to the estimated head pose, Gh = (θ, φ),
and re-projected back onto the image plane to generate the
transformed reference images, f̂xo

(i, j), as shown in Figures
2(a) and 2(b). Upon the acquisition of a newly observed eye
region image, gx, having an iris centre at xnew, displacements
∆xo and ∆xnew are calculated with respect to a reference
point inside each of f̂xo(i) and gx. The eyeball rotation angles,
α and β, are finally estimated by projecting the displacement,

∆x = ∆xo −∆xnew (3)

onto the spherical surface of the eyeball with known radius,
r, as shown in Figure 2(c).

IV. ALGORITHM IMPLEMENTATION

The next sections outline the implementation of methods to
extract the image information required for gaze estimation.

A. Face Detection, Feature Initialisation and Tracking

The face region was initially detected by the Viola-Jones
algorithm [18] in real-time, trained on a wide variety of face
images. Feature trackers were randomly latched upon salient
facial features within the face bounding box detected earlier,
by employing the feature detection method of Shi and Tomasi
[20] to identify good features to track. These feature points
were then tracked across consecutive image frames via the
Kanade-Lucas-Tomasi (KLT) feature tracker [21].

B. Kalman and Particle Filtering

Kalman filter: The initial state estimate, ξ0, of the Kalman
filter is set to the 3-dimensional shape, Ŝ, computed via
the shape and motion factorisation algorithm of Tomasi and
Kanade [22], which recovers the required 3-dimensional shape
information from the trajectories of salient feature points
tracked across a sequence of image frames.

Particle filter: Implemented a Bootstrap filter [23], approxi-
mating its state evolution by a Gaussian random walk model.

C. Gaze Estimation

The iris centre coordinates used in the computation of the
eyeball rotation angles were localised by a Bayes’ classifier
pre-trained on iris and non-iris pixels [24] to segment the iris
regions by exploiting their photometric appearance.

In order to compute the displacements, ∆xo and ∆xnew,
as explained in Section III, we investigated the use of the
inner eye corners as the designated reference points, in com-
parison to the weighted median of sets of salient feature
trackers positioned above the eyes, or a weighted average
of the displacements from both features simultaneously. The
weighting parameter that permits computation of the weighted
average assumes a value between 0 and 1, and corresponds to
a measure of tracking confidence obtained from a template-
matching technique that tracks the inner eye corners.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In light of our interest in pervasive eye-gaze tracking,
the proposed method was evaluated on video clips from the
EYEDIAP Database [25] captured by a visual Kinect camera
at 30 frames per second and a spatial resolution of 640×480
pixels. The videos feature different participants performing
free head and face movements while gazing at discrete visual
targets displayed on a monitor screen. For evaluation purposes,
we selected subjects with suitable eye region contrast that
permits the iris region to be visually discerned from the sclera.
The proposed method has been implemented in MATLAB and
runs at 12fps on a 2.5GHz Intel Core i7 processor.

Table I presents the mean absolute error (MAE) and stan-
dard deviation (SD) values of the gaze angles for different
subjects in the EYEDIAP Database, calculated for the left and
right eyeballs separately, and for the combined gaze estimates.
Knowing the 3-dimensional positions of the eyeball centres
with respect to the visual targets displayed on the monitor
screen, as provided by the ground truth information in the
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Fig. 3: Weighted median (red) of salient feature trackers
positioned above the eyes (green), selected from the set of
feature points used for head pose estimation (green, yellow).

EYEDIAP Database, the ground truth combined gaze was
calculated from the vector that joins the mid-point between
the eyes together with the visual targets on the monitor screen.
Similarly, the estimated combined gaze was calculated from
the vector that joins the mid-point between the eyes to the mid-
point between the intersections of the individual gaze vectors
with the screen. This permitted the computation of error for
the estimated gaze with respect to ground truth, as presented in
Table I. This table also presents the results obtained in utilising
the inner eye corners as the designated reference points for
the estimation of eyeball rotation (A), in comparison to the
weighted median of sets of salient feature trackers positioned
above the eyes (B), as shown in Figure 3, or a combination
of both calculated as a weighted average (C).

A comparison between the results achieved by different
reference points utilised in the estimation of eyeball rotation
shows that in general the methods that exploited the inner
end of each eyebrow as reference points, that is (B) and (C)
in Table I, produced the lowest gaze estimation errors for
the gaze yaw and pitch angles, as marked in green. It has
been noted that the tracking of the inner eye corners as the
designated reference points (A) suffered from occlusion during
head rotations, where leftward or rightward rotations tended
to occlude the corresponding inner eye corner resulting in
increased gaze estimation error for the respective eyeball. This
was not the case for (B) since this depended upon features that
remained mostly visible during head rotations. However, due
to increased distortion in the appearance of the face region
underneath the features of interest during head rotation, these
reference points tended to drift away from their initial image
positions and hence give rise to increased gaze estimation
error. In this regard, it was observed that the feature trackers
tended to exhibit less drift in the vertical direction, mainly
since the forehead is less curved in the vertical direction and
hence its appearance suffers less distortion during vertical
head rotations. It may also be observed from the results
in Table I that the majority of the lowest gaze estimation
errors for the gaze yaw, marked in green, were obtained by
computing a weighted average of the image positions of the
inner eye corners (A) together with the image coordinates
of the weighted median of salient feature trackers (B), to
produce new reference points denoted by (C) in Table I. The
combination of both methods allowed for an improvement in

the gaze yaw estimation by relying on the weighted median of
the salient feature trackers when the inner eye corner tracking
became unreliable or failed entirely.

The results in Table I for every participant indicate an over-
all improvement in the separate left and right gaze estimates
if these are combined into a single gaze estimate. This is
congruent with other methods in the literature, which have
reported that the combination of the two gaze vectors into a
single estimate tends to compensate for the effect of noise [26],
[27]. In comparison with the state-of-the-art, as per Table II,
our method achieves comparable or better performance than
the methods of [26], [28], [29], albeit the wide range of head
rotation angles of the considered subjects from the EYEDIAP
Database, spanning [-25◦, 18◦] in yaw and [-20◦, 19◦] in pitch.
The method of Haiyuan et al. [30] that performs better than
ours, does not consider free head movement.

VI. CONCLUSION

In this paper, we have proposed a method for eye-gaze
estimation that brings together our work for head [13] and
eye [11] pose estimation. The combined method is based on
our definition of the SphERo model [11], that compensates for
the change in eye region appearance under head rotation. The
estimation of the head rotation angles, which drive the SphERo
model, exploits the trajectories of salient feature points spread
randomly over the face region, and combines shape and motion
factorisation together with particle and Kalman filtering to
estimate the head pose under non-rigid face movement. Our
method has been evaluated on the EYEDIAP Database and its
performance was found to be comparable or better than the
state-of-the-art.

Future work aims to improve the robustness of the salient
feature tracking especially under large head rotations, in order
to improve upon the achieved gaze estimation accuracy.
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