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Abstract—Result of analysis of EEG responses of infants
between 8-13 months of age to the syllable speech sounds
are presented. We conducted an ERP experiment with an
oddball paradigm consisting of two types of deviant stimuli
(easy and hard) and standard stimulus. A nonnegative Tucker
tensor decomposition (NTD) was used to characterize differences
in processing of stimuli using a time-frequency-spatial (multi-
domain) features. We extracted the multi-domain features for a
reliable representation of the underlying infant brain activity
to analyze the processing of standard and deviant stimuli.
The obtained results show significant differences in processing
between standard and deviant stimuli and may be interpreted
in terms of mismatch negativity (MMN) and acoustic change
complex (ACC) evoked potentials. Moreover, these results serve
as a proof-of-concept for application of tensor decomposition-
based analyses for challenging infant EEG data.

Index Terms—infant EEG, event-related potentials, time-
frequency-spatial features, nonnegative Tucker tensor decompo-
sition

I. INTRODUCTION

The early development of speech perception skills of infants
that constitute a foundation for future learning of language has
not been fully understood. The Mismatch Negativity (MMN)
is a component of an event-related potential (ERP) typically
elicited in response to rare stimuli (deviants) presented in a
series of frequent ones (standards) during a passive oddball
paradigm [1]. The MMN is an indicator of detection of the
acoustic change in a sequence of frequent sounds [1]. It
occurs regardless of whether a subject is paying attention to
the sequence, which makes it very useful for testing how
newborns and infants discriminate speech sounds [2]. The
source of MMN signal is located in the auditory cortex and
in the frontal lobe [3]. Similarly to the MMN, the Acoustic
Change Complex (ACC) that is obtained in response to a
stimulus that contains multiple time-varying acoustic changes
[4] reflects discrimination capacity in the absence of attention.
Its generator is located in the auditory cortex. However, it is
much larger in amplitude and requires much fewer stimulus
presentations than the MMN. ACC is used for evaluation
of speech sound discrimination and perception in clinical
applications [5]. Considering that a signal to noise ratio is
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usually very low in infant EEG data, we expect that ACC
response will be more robust and consistent than MMN in
infants EEG signal.
In our study, we have used a passive oddball paradigm with
two types of deviant syllables and one standard syllable from a
language that is foreign to the child. Averaging the data across
epochs separately for each stimulus type showed that the time
window containing the MMN component is in [500, 700] ms
interval after stimulus onset for all subjects. In response to
both types of deviant syllables and standards ACC-like P1-
N1-P2-N2 complex is observed. Thus, it is quite likely that
for infant data characterized by a low signal-to-noise ratio the
MMN and ACC responses overlap. This implies that it is not
possible to determine whether ACC contributes to the MMN
using a conventional ERP analysis that provides information
about ERP component features only in the time domain.

On the other hand, factorization-based approaches are
widely used in analysis of EEG signals [6]– [7]. In partic-
ular, tensor decomposition methods allow to investigate not
only temporal but also spatial and frequency characteristics
simultaneously [8]. They also provide a good framework for
the group-level analysis of ERP [9]– [10]. There are two tra-
ditional models for tensor decomposition: Canonical Polyadic
Decomposition (CPD) and Tucker Decomposition (TD) [11]
[12]. In this study we chose TD, as this decomposition allows
more flexibility to choose components from factor matrices
compared with CPD, and it has also been shown in [10] that
TD is more robust to low signal-to-noise ratio than CPD. This
is especially important in our settings as the infant EEG data is
inherently noisy. Furthermore, we incorporated nonnegativity
constraints on the TD (NTD) as the time-frequency (power
spectrum) representation (TFR) of the EEG signal can attain
only nonnegative values. The multi-domain features extracted
using tensor decomposition may be used to differentiate across
groups using tests for statistical significance. Indeed, such
multi-domain features convey more information and yield
better insight into data than single domain analysis, offering
a better representation of cognitive functions. [9] [10]. They
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can be also used to train a classifier for diagnosis of brain
disorders [13] [8].

In this paper, we focus on statistical testing approach, where
the main goal of this study is to extract a desired multi-domain
feature from infant EEG data using NTD clearly representing
the MMN component occurring in the [500, 700] ms time
window. In particular, an analysis using tensor decomposition
allows us to characterize this component in time-, frequency-,
and space- domains simultaneously, and to determine whether
the ACC contributes to the MMN component.

II. METHOD
A. Data acquisition and preprocessing

Acquiring infant EEG is very difficult due to the large
number of artifacts related to movement. The data of 21
healthy native Polish infants (10 boys, mean age = 10 months,
SD = 1.3 months, age range: 8.5-12.8 months) was collected
in the BabyLab at the Nicolaus Copernicus University.

Infants participated in the passive oddball paradigm con-
sisting of two deviants, called easy and hard, and a standard
stimulus. French syllables of 350 ms duration were used as
stimuli, recorded in a soundproof chamber by a professional
native male speaker. Spectral characteristics of the stimuli
were analyzed using Praat software system [14] and are
shown in Fig.1. The deviant syllables were chosen from those
which were categorized by adult Polish native speakers, not
familiar with French, as either easy (easy) or difficult (hard)
to discriminate from the standard syllable.

(a) Standard Stimulus

(b) Easy Stimulus (c) Hard Stimulus

Fig. 1. Spectral characteristics of the stimuli used in the experiment.

The inter-trial-interval was 800 ms plus a jitter following
exponential distribution with an expected value of 100 ms,
truncated to fit the maximum trial interval length (1000 ms
after stimulus onset). The random variable for the number
of standard stimuli preceding a deviant stimulus followed a
geometric distribution with success probability 1/3. For this
random variable, ”failures” were the occurrences of standard
stimulus, and ”successes” were the occurrences of deviant

stimuli. This implies that on average there were 75% of
standard stimulus and 25% of deviant stimuli presented during
the experiment. Another random variable following Bernoulli
distribution with p = 1/2 was used to determine which
deviant stimulus should be presented, yielding that, on average,
12.5% of both ”easy” and ”hard” deviants have been presented
during the experiment. The choice of exponential distribution
for jitter, and geometric distribution for the number of stan-
dards before deviant, was made to take advantage of their
memoryless property, implying that infants were less likely to
adapt to certain patterns of time intervals between subsequent
trials, and to the sequence of trials, respectively. This is
especially important considering the overall shortness of inter-
trial-intervals (900 ms on average) which was necessary to
record sufficiently large number of trials for an infant.

A child was seated on caregivers lap in front of the monitor
at a distance of 1 m. During the EEG data recording silent
cartoons were shown on the monitor. A caregiver was asked to
sit without talking and to refrain interacting with a child. The
stimuli were presented using E-prime system via a loudspeaker
(Kurzweil KS-40A) placed in front of a child at a distance of
0.75 m.

EEG data were recorded at 128 electrode sites using
Geodesic Sensor Nets (Electrical Geodesics, Inc., Eugene,OR,
USA) with the operating impedance below 50 kΩ. The sam-
pling rate was 1000 Hz. The electrode COM, placed next
to the vertex (Cz) served as a common ground. Electrodes
located at the edges of the cap, as well as bad channels, were
excluded from the analysis. From the remaining electrodes 57
were selected to cover the entire head (7 electrodes at the
midline and 25 electrodes placed over each hemisphere.

The data was downsampled offline to 250 Hz, band-passed
filtered between 0.5-20 Hz and re-referenced to the mastoids
(E57, E100). Epochs time-locked to the stimulus onset were
extracted. The length of the epoch was 1100 ms, includ-
ing a 100-ms prestimulus baseline. The artifact-contaminated
epochs were automatically rejected if the amplitude of elec-
trophysiological activity exceeded the absolute threshold of
120 mV. The eye movement artifacts were removed using the
EEGLab implementation of ICA algorithm (runica [15]). The
remaining epochs were then visually inspected to check for
any other artifacts. Only standards immediately preceding de-
viants were included into the individual ERPs. In this way the
number of trials for standards and deviants was kept equal for
all ERP comparisons. The local negative peaks were defined
within [500, 700] ms time window corresponding to the MMN.
Peak amplitudes and latencies were extracted automatically at
each electrode using the ERPLab Measurement Tool [16].

B. Tensor generation

A fourth-order tensor Y ∈ R
If×It×Ic×Is
+ was constructed

by performing time-frequency analysis (TFR) for all EEG
channels of all subjects using epochs for two different stim-
uli (standard and one of deviant stimulus) to allow finding
significant differences between their multi-domain signal sig-
natures. The numbers of frequency bins (If ), time frames (It),
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channels (Ic), and subjects (Is) provide the dimensions of the
tensor.

In this study time-frequency analysis of ERPs is done using
fixed time window lengths for all frequencies. The TFR was
computed over a sliding time window for each trial and then
averaged across trials. The whole trial interval is between
[−100, 1000] ms and the time interval of interest is between
[500, 700] ms. We have used a tapering window of 200 ms
yielding 5 Hz freq resolution. The data analysis was performed
using Fieldtrip software1.
C. Nonnegative Tucker Decompotion (NTD)

The Tucker decomposition is a form of higher-order prin-
cipal component analysis (PCA) [17]. It decomposes a tensor
into a core tensor multiplied by a matrix along each mode.
Given the N th-order tensor Y ∈ RI1×I2×···×IN

+ , the NTD
factorizes Y as follows [11]:

Y ≈ G×1 A
(1) ×2 A

(2) ×3 · · · ×N A(N) = Ŷ , (1)

where Ŷ is an approximation of the tensor Y , and A(n) =

[a
(n)
1 , a

(n)
2 , ..., a

(n)
J ] ∈ RIn×Jn

+ for n = 1, 2, . . . , N are the
factor (component) matrices. The tensor G ∈ RJ1×J2×···×JN

+

is called the core tensor and its entries show the level of
interaction between factor matrices, and ×n represents the
n-mode matrix product [11]. Note en passant that another
frequently used tensor decomposition method, the CPD is a
special case of Tucker decomposition whose core tensor is
super-diagonal [11].
D. Computing the Tucker decomposition

Determining the number of extracted components (columns)
for each factor matrix (finding the size of the core tensor) is a
crucial issue for efficient Tucker decomposition. In this study,
we have used a triangle method [18], originally proposed for
finding the location of the corner in the L-curve method.
We are using the Tensorlab toolbox2 mlrankest() function
implementing the triangle method for estimation of the number
of components in each factor matrix.

Most of NTD algorithms for obtaining Tucker decomposi-
tion are based on the minimization of the squared Euclidean
distance (Frobenius norm) subject to the nonnegativity con-
straints as follows [10]:

D(Y |G, {A}) =
1

2
||Y −G×1A

(1)×2A
(2)×3 · · ·×NA(N)||2F .

(2)
At each iteration, the objective function is optimized with

respect to a specific factor matrix A(n). The low speed
convergence is the main bottleneck of this method due to the
unfolding of tensor from one mode to another at each iteration.
By considering NTD as a series of nonnegative matrix factor-
ization (NMF) problems, we can accelerate the whole process.
However, NMF algorithms may converge slowly on a large-
scale problem. One solution is to use a low-rank approximation

1http://www.ru.nl/neuroimaging/fieldtrip
2https://www.tensorlab.net

method, such as PCA, to reduce dimensionality and speed
up the convergence. Unfortunately, this method cannot be
applied directly to nonnegative matrix factorization, as it
usually violates the nonnegativity constraints. In this paper,
we use the generalized version of low-rank approximation to
NMF (IraNTF) algorithm to perform the nonnegative Tucker
decomposition which is fast and robust to noise [19].

Fig. 2. The grand averaged responses to easy and hard deviants and
corresponding standards

E. Extracting the multi-domain features

A fourth-order tensor Y ∈ R
If×It×Ic×Is
+ was constructed

to investigate the properties of ERPs in different domains
simultaneously. Decomposition of Y to extract the multi-
domain features of ERPs is obtained using NTD as:

Y ≈ G×1 A
(f) ×2 A

(t) ×3 A
(c), (3)

where A(f) ∈ R
If×Jf

+ , A(t) ∈ RIt×Jt
+ , A(c) ∈ RIc×Jc

+ ,
Jf , Jt, and Jc are the numbers of extracted components
for the spectral, temporal and spatial factors, respectively,
and G ∈ R

Jf×Jt×Jc× Is
+ is the core tensor that carries the

multi-domain features of ERPs. Note that the factor matrix for
the subject dimension is an identity matrix of size Is which
allows for comparison of differences between two stimuli
among the subjects based on coefficients of the core tensor.
For example, given the spectral component jf , the temporal
component jt, and the spatial component jc, the multi-domain
feature for subject i is obtained by G(jf , jt, js, i). Hence, for
each subject, there are exactly Jf × Jt × Jc multi-domain
features.

III. RESULTS

and discussion
A. Conventional analysis

Fig. 2, demonstrates the grand averaged responses to easy
and hard deviants and corresponding standards. Visual in-
spection of the figure reveals that there is a broad and
heterogeneous positive deflection followed by a negative one
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(a) Desired multi-domain feature in standard-easy tensor (TSE)

(b) Desired multi-domain feature in standard-hard tensor (TSH)

Fig. 3. Desired multi-domain features obtained from Nonnegative Tucker Decomposition.

that peaks around 550 ms, both in response to each deviant
type and standard stimulus. The grand mean waveforms in our
study are similar to those obtained in infants by other authors
[20] [21]. Specifically, the response is biphasic with a large
positive peak followed by the negative one. This shape of the
waveform might be explained in terms of the immaturity of
the auditory central nervous system. [22].
Although the negative peak in our study did not appear until
about 500 ms after the stimulus and it was delayed compared
to a conventional MMN response, which typically peaks
around 200 ms [1], it still might represent MMN. This delay
may be caused by complex and unusually long speech sounds
that were used in our study (see: Fig.2) (in typical MMN
experiments stimuli are about half the duration of the speech
sounds applied here). The negative component in [500, 700]
ms time window appeared also in response to standards, which
is rather unusual for typical MMN experiments. On the one
hand, an amplitude of this peak was still larger for deviants
compared to standards suggesting the presence of MMN-
like component. On the other hand, the positive component
that preceded an MMN-like response was not uniform and
it is possible to extract at least few subcomponents within
it. Therefore, we might hypothesize that the heterogeneous
positive and negative peaks form the complex of alternating
auditory positive and negative components (P1-N1-P2-N2) that
might be considered as ACC. This becomes even more likely
when we take into account that in our study infants were
exposed to relatively long and complex speech sounds. In
this case ACC, which is considered as reflecting an acoustic
change within the stimulus, should be expected [23]. Our
results are partially in line with those demonstrated by [21]
who aimed at testing the ACC elicited by long-duration speech

stimuli in infants. The authors found that ACC might be
successfully used as an index of speech discrimination ability.
However, contrary to our study, they did not use an oddball
paradigm (infants listened to the stimuli presented randomly
in a sequence). Since MMN is typically evoked by short
stimuli in passive oddball protocols, whereas ACC appears
in response to complex long-duration speech sounds, it is
possible that in our study these two components overlapped.
Further, it would be impossible to differentiate between MMN
and ACC component based only on data analysis in the time
domain. This is the reason why we decided to apply the tensor
decomposition analysis enabling evaluation of temporal but
also spatial and frequency characteristics of EEG signal.

B. Multi-domain feature of MMN by NTD

Two fourth-order tensors: standard-easy (TSE) and
standard-hard (TSH), with If = 4 frequency bins, It = 26
time frames, Ic = 57 electrodes, and Is = 42 subjects were
constructed for the standard vs. easy stimulus and standard vs.
hard stimulus, respectively. Here, the first 21 coefficients in
subjects’ dimension represent results for the standard stimulus
and the remaining 21 coefficients in subjects’ dimension
represent results for the easy deviant stimulus and the hard
deviant stimulus in TSE and TSH, respectively.

Application of triangle method yields Jf = 4 spectral
components, Jt = 5 temporal components, Jc = 20 spatial
components for TSE, and Jf = 4 spectral components, Jt = 6
temporal components, Jc = 21 spatial components for TSH.
The IraNTF algorithm produced stable NTD decomposition
for such a setup. Due to lack of space, we omit the details
of stability analysis in this report. One-way ANOVA (analysis
of variance) tests were performed to find the multi-domain
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feature(s) showing a significant difference between two stimuli
for each tensor. Among such multi-domain features, the feature
in Fig. 3(a) was selected as the desired multi-domain feature of
MMN for TSE. The corresponding temporal component and
the spectral component associated with the feature in Fig. 3(a)
appears to match the properties of MMN in the time domain,
i.e. the peak latency is around 550 ms, which is consistent
with the data obtained in the conventional analysis (Fig. 2).
The spatial domain, i.e. the fronto-central distribution of this
peak also suggests that it is MMN response. On the other
hand, the spectrum peaks at around 10 Hz whereas for a
typical MMN the frequency band ranges below this value,
from 2 to 8.5 Hz, would be more desired [24]. However,
in the present study, due to time constraints of infant EEG
experiments, the tensor analysis was performed in a relatively
narrow time window [−100, 1000] ms which precluded fine-
resolution spectral analysis, especially for low frequencies.
Similarly, the desired feature of MMN for TSH is shown in
Fig. 3(b). It has the desired temporal domain (the peak latency
ca. 550 ms) and the same frequency domain (10 Hz) profiles
than the feature presented in Fig. 3(a). TSH was distributed in
the left auditory cortex which might suggest that it represents
more ACC than MMN response.

In our study, we used two different types of deviants. One
of them (easy) was chosen to be well discriminated from the
standard stimuli. In this case, we expect to have the most
apparent MMN response and our outcomes have shown that
the TSE corresponded relatively well to MMN characteristics
Fig. 3(a). The second deviant type (hard) is supposed to be
difficult to differentiate by adult listeners but not necessarily
by infants at the age of 8-12 months who,potentially, are
capable to detect changes between all foreign phonemes [25].
Theoretically, then, in this group, MMN response to hard
deviant might have occurred. However, we cannot exclude
that hard deviant would be more difficult to distinguish from
standards than the easy one also for infants and, thereby, elicit
less pronounced MMN component. In this case, ACC might
be more visible and have a greater contribution to MMN.
ACC reflects any changes in the spectral properties of sounds
and perhaps more precise analysis of hard stimulus by the
analytical and speech-sensitive left auditory cortex is needed
to differentiate this deviant type from the standard. Thus, it
is possible that the feature presented in the Fig. 3(b), might
correspond to ACC rather than MMN.

IV. CONCLUSIONS

The tensor analysis might be useful for detailed investi-
gation of the overlapping components reflecting pre-attentive
differentiation of speech sounds. This paper presents a rela-
tively new methodological approach and the results should be
interpreted with caution. Further analysis on a larger sample
is needed to clarify the outcomes.
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