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Abstract—The extended field of view (FoV) offered by head
mounted displays (HMD) increases the immersive experience, but
it also introduces new visual quality challenges to be addressed.
The judder artefact is a quality degradation factor that appears
during object tracking and it is caused by eye movement relative
to the display. As a first attempt to investigate the negative effect
of judder in wide FoV applications, we built a new dataset of
omnidirectional videos at different bitrates and judder severity
levels. Two subjective tests were conducted to assess the quality
in terms of perceived severity of judder in compressed video
sequences. The outcomes provide new findings about the effect
of judder on human perception. The results also give further
understanding about the interaction between presentation quality
and judder that can be utilized for developing objective models
to predict quality degradation in presence of judder.

Index Terms—omnidirectional video, visual quality, judder,
field of view, object tracking

I. INTRODUCTION

In recent years, noticeable effort has been devoted towards
development of wide field of view (FoV) displays. With
the advent of omnidirectional (360◦) capturing devices and
advanced head mounted displays (HMDs), we have witnessed
a significant rise of 360◦ multimedia content. The display FoV
for offering an immersive experience can cover a full 360◦

sphere or it may be limited to a spherical segment.
The growth of omnidirectional video in consumer market

introduces various challenges of which measuring the visual
quality of experience (QoE) of end-users is a critical one.
Therefore, it is of importance to study the effect of various
degradation factors influencing the QoE of omnidirectional
videos. Earlier studies have focused on factors such as com-
pression [1], stalling [2], and resolution [3].

Judder is a visual artefact caused by eye movement relative
to the display and it is considered as a critical quality issue
that impacts the sense of immersion and viewer engagement.
When watching a moving object in a video, the image of
the object slips over the retina for a duration of frame and
falls on incorrect spatial locations which results in temporal
aliasing. This QoE factor can be observed as a non-smooth
choppy motion blur. Johnson et al. [4] analyzed the judder
effect based on object speed using window of visibility (WoV)
theory. Oh et al. [5] proposed an objective metric to measure
the judder artefact in 2D video sequences according to spatial
and temporal features.

Fig. 1. Demonstration of the judder effect. (a) an ideal (real-world) object
tracking. (b) object tracking on a digital display. (c) Visualization of the judder
effect during object tracking.

Although, judder is manifesting itself on all displays, partic-
ularly at lower frame rates, it is more prominent on wide FoV
displays (such as HMDs) and contributes to motion sickness.
Because of the extended FoV, scene motions can be observed
and tracked for longer duration than in traditional 2D displays.
Moreover, the user can turn his head at much higher speed,
which increases the slip rate between eye and object and hence
causes more severe presence of judder effects. Figure 1 illus-
trates the perceptual effect of judder during object tracking.
The space-time diagram in Fig. 1a shows an ideal object
tracking in real-world where the relative position of object
with eye is always constant. Note that the x axis indicates
the displacement of object relative to the eye and not to the
real world. Figure 1b presents object tracking on a display
with a given refresh rate in which the virtual position of an
object slips over the eye and falls on incorrect positions during
each frame. The relative object-eye displacement induces noisy
sensory motions to the eyes and produces a judder effect that
is simulated in Fig. 1c for visualization purpose.

A straightforward solution to reduce the judder is to increase
the displays refresh rate. Unfortunately, refresh rates of current
displays are still not sufficient to compensate for this artefact.
In case of HMDs, consumer devices (such as Oculus Rift and
HTC Vive) are operating at refresh rates of 90Hz, which is still
way below the desired refresh rates to completely surpass the
judder. As mentioned earlier, the judder is more significant

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE



Fig. 2. Screenshots of some video sequences used in the database

in wide FoV displays due to high degree of freedom and
faster head speeds, thus the required refresh rate for judder
suppression in such displays is even higher than the one
needed for 2D displays. This needs a significant improvement
in capturing and display technologies which may not be
achieved in near future to completely solve the judder impact.

Another major requirement for any type of video content is
the ability to compress the data for efficient storage and trans-
mission. Most of the existing objective quality metrics (such
as Peak Signal-to-Noise Ratio (PSNR), Structural SIMilarity
(SSIM) [6] index, and Visual Information Fidelity (VIF) [7])
index are generally useful to quantify the quality loss caused
by compression artefacts, whereas such metrics lack features
to consider other quality factors such as judder. Since com-
pression artefacts are a prevalent type of distortion observed
in all video types, we decided to investigate the impact of
judder on videos compressed at various bitrates. Zeng et al. [8]
studied the effect of video compression and playback stalling
factors for quality assessment. The joint effect of quantization
and frame rate artefacts is explored in [9]. Bitrate reduction
for video compression leads to degradation of the presentation
quality [8] of decoded video. On the other hand, users experi-
ence a negative judder impact when tracking objects in videos.
In such cases, judder may interact with presentation quality
causing impacting the overall QoE. Therefore, we conducted
a subjective experiment to clarify the relation between judder
and presentation quality. More specifically, we established a
new database1 of omnidirectional videos to assess the judder
effect, which have been compressed at three bitrate levels to
modulate the video presentation quality. Then, subjective tests
are conducted to evaluate the QoE of videos. The reported
results reveal a number of outcomes that are helpful for future
development of new objective QoE models that can measure
the impact of judder on video quality.

II. SUBJECTIVE TEST METHODOLOGY

The existing publicly available omnidirectional video
databases are mostly focused on the presentation quality af-

1http://data.etrovub.be/qualitydb/judder-vqa

fected by compression artefacts. To the best of our knowledge,
the impact of judder has never been studied for omnidirectional
video content in which object tracking can produce significant
judder artefacts. Moreover, this work is the first attempt to
investigate the dependency between the presentation quality
and judder. To this end, we established a new omnidirectional
video database with certain features to study the effect of
judder and videos of different bitrates.

The database encompasses fifteen high-quality video se-
quences with resolution 3840x1920 @30 fps, including twelve
natural and three synthetic videos. The natural video sequences
are captured with a GoPro Fusion 360◦ camera. Two of the
synthetic sequences (Airplane and Flying saucer) are generated
using a video animation software and one video (Shark) is
downloaded from Youtube with getting permission from the
video owner. To induce the judder effect, each video scene
presents a target object/person that is moving in a certain
direction; tracking the scene objects by the viewer can cause
judder as a visual artefact. Figure 2 shows screen shots for
some of the source video sequences used in the experiment.

Since judder is a function of tracking speed, the video
sequences cover three velocity levels for the tracked objects
referred as low, medium and high velocity. The average
angular velocity of a target object in each video sequence is
approximately obtained by computing the displacement of the
target between successive frames. The initial position of an
object is manually located in the first frame and then tracked
in next frames.

The distance between the centre points of the bounding
boxes covering a target object in two frames is measured as a
displacement value. Since an omnidirectional video frame is
presented in form of an equi-rectangular projected image, the
captured 360◦ content is a projection to spherical image plane.
Hence, the displacement value should actually be computed
between two points on the sphere [10] and we first need to
convert the points from 2D Cartesian to spherical coordinates.

A pixel point on a spherical plane is defined with spherical
coordinates radius r, polar angle θ, and azimuthal angle φ.
Having a sphere with unit radius, a point is translated from
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TABLE I
THE PROPERTIES OF REFERENCE VIDEOS

Video name Bitrate (Mbps) Velocity (deg/s)
L

ow
V

el
oc

ity Campus1 493.59 23
Skateboard 499.37 22
Scooter1 358.21 22
Car1 403.08 21
Shark 109.69 20

M
ed

V
el

oc
ity Campus2 595.67 55

Bike1 460.44 41
Square1 440.90 45
Car2 401.13 50
Airplane 30.98 40

H
ig

h
V

el
oc

ity Scooter2 350.02 64
Square2 441.71 70
Bike2 446.44 66
Car3 401.97 72
Flying saucer 30.25 63

Cartesian to the spherical coordinates as follows:

θ =
2π

W
x, φ =

π

H
y (1)

where x, y are the Cartesian coordinates and W , H denote the
width and length of the equi-rectangular image. Having two
points on the spherical plane (θ1, φ1), (θ2, φ2), the angle at
center of the sphere separating two points is computed using
the haversine distance ∆λ [11].

∆λ = 2 arcsin

√
(sin2 ∆φ

2
+ cosφ1. cosφ2. sin

2 ∆θ

2
) (2)

Hence, the displacement value is expressed by the angular
velocity of the object. The average angular velocity for all
frames is used to measure the object velocity.

The source videos are divided into three categories based
on the object velocity levels and listed in Table 1 with detailed
information.

Each source video sequence is encoded at three bitrate
levels using H.265/HEVC. The selected bitrates for natural
sequences are 4 Mbps, 12 Mbps, and 40 Mbps. The animations
are encoded at 800 Kbps, 1.3 Mbps and 2 Mbps. In total, we
obtained 60 test video sequences including 15 source and 45
compressed videos. The test videos are viewed using Oculus
Rift HMD with 2160x1200 resolution @ 90 Hz and FoV of
110 degrees. A single stimulus quality scoring strategy is used
for the test to which a total number of 20 naive test subjects (12
males and 8 females, age range 20 to 35 year) participated.
All test subjects passed the visual acuity and colour vision
Ishihara tests before participating the subjective experiment.

Two experiments were designed for quality assessment of
the generated videos. The first test only focused on the presen-
tation quality (in terms of compression artefacts) for reference
purposes, while the second test considered both compression
and judder effects in quality evaluation. A dedicated training
session was conducted at the beginning of each experiment to
provide sufficient information for quality rating while avoiding
subjects to become over-educated or biased.

Fig. 3. (a) a segment of the first frame of equi-rectangular video (bike1) (b)
The guide-mask to fix the view direction of users prior to tracking.

For experiment 1, the compression artefacts are introduced
in the training session such that test subjects understand the
type of expected distortions. Thereafter during the test session,
each video sequence was displayed two times so that the
subjects had enough time to freely explore different parts of the
scene. The sequences were presented in random order to each
subject and a scoring panel was displayed after each video
sequence to record the quality score. As a result, all subjects
evaluated the presentation quality of the videos by considering
the compression distortions. In this part of the experiment, the
naive subjects were not informed about the goal of second test
(judder effect) and they were instructed to only focus on the
compression as the effective distortion type.

In experiment 2, additional instructions were given during
the training session to understanding the judder effect that
appears during object tracking. An 8-second guide-mask (Fig.
3) is inserted before each video playback so that the subjects
can locate the starting position of a target moving object. The
guide-mask helps users to have prior knowledge about the
location and direction of the tracking and fixate the eyes on the
object of interest. This provides smooth tracking experience
and avoids potential tracking failures by subjects. After the
guiding period, the video is played and the subject starts
tracking a target object in the scene. Finally, the overall
quality score is rated by considering both judder effect and
compression artefacts observed during tracking. Unlike the
first experiment, each video is displayed only once.

The whole test takes one hour and 15 minutes per subject
which is divided into four sessions with a 5-minutes break
in between the sessions to avoid visual fatigue and motion
sickness. Figure 4 illustrates the structure of the two test
sessions and the scoring strategy for rating the quality. The
scores range from 0 to 100 respectively from poorest to best
video quality.

III. RESULTS ANALYSIS

The results of 20 subjects were gathered from two exper-
iments. A rejection analysis was performed to detect outlier
subjects. One outlier subject was detected and removed, and
hence 19 valid test subjects remained. The subjective rates
were converted to Z-scores [12] using mean and standard
deviation of quality rates. Then for each video sequence,
mean opinion score (MOS) is computed by averaging the Z-
scores of all subjects. Thus, two MOS scores were obtained
for each video based on the two experiments; (a) a MOS
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Fig. 4. The scoring method and subjective test protocols for experiments 1
and 2. VP: video playback, GP: guiding period.

Fig. 5. Boxplots indicating the correlation between the scores of subjects
and MOS in experiments 1 and 2; (a) Pearson linear correlation coefficient
(PLCC) and (b) Spearman rank-order correlation coefficient (SROCC)

representing the presentation quality (compression) (MOSC)
and (b) a judder-compression overall quality (MOSJC).

To evaluate the performance of the test subjects in the two
experiments, we computed the correlation of scores obtained
from each subject versus MOS as ground-truth data. Figure 5
presents the boxplots of correlation coefficients for all subjects
in terms of Pearson linear correlation coefficient (PLCC) and
Spearman rank-order correlation coefficient (SROCC). As it
can be observed, the test subjects are generally performing
well in predicting the quality in both experiments.

To observe the quality variations in presence of judder,
a scatter plot of presentation quality MOSC versus MOSJC

(experiment2 scores) for 60 video sequences at three velocity
levels is depicted in Fig. 6a. The data points below the diagonal
(black) line imply the quality drops due to judder while the
data points above the line indicate quality improvements. Fig.
6b shows a logistic curve fitted on scores at different velocity
levels which helps to better observe the quality changes at
three velocity levels. The relation between two groups of MOS
values provides a number of important observations described.

For videos with low velocity objects, the tracking experience
does not induce noticeable judder and the overall quality is
not dropped. Besides, visual masking effect on compression
artefacts occurs resulting in decrease of the visibility of
artefacts and quality rising during tracking. Such improvement
is slightly stronger at the middle-range quality than low quality
because the artefacts are still highly visible at low quality
while they are better masked at middle-range quality. At
high quality, where the compression artefacts are minor, the

(a)

(b)

Fig. 6. Scatter plots of the subjective scores from two experiments.

TABLE II
THE AVERAGE MOS IN TWO SUBJECTIVE EXPERIMENTS OVER THREE

BITRATES AND VELOCITY LEVELS.

Bitrates Velocity levels
R1 R2 R3 Low Medium High

MOSC 28.18 58.32 80.48 60.12 62.64 64.31
MOSJC 33.15 59.82 70.92 65.06 57.38 55.13

MOSJC is very close to MOS of presentation quality.
For videos with medium and high object velocity, the judder

effect is more critical. At higher speeds, less artefacts may be
visible due to the motion masking effect but the judder on
the other hand induces a negative quality impact. At lower
quality levels, the masking and judder interact each other
and there is not a noticeable change in MOSJC compared to
the presentation quality. By contrast, at higher quality levels
(MOS>60) the judder impact is stronger causing a significant
drop of MOSJC compared to MOSC . The quality drop is more
severe at high velocity compared to medium velocity level.
Table 2 compares the average MOSC and MOSJC at different
bitrates and velocity levels, which confirms our observations.
In general, the MOSJC is slightly improved than MOSC at
low bitrates while it significantly drops at high bitrates and
high speeds due to the impact of judder.

The videos are evaluated using several full-reference (FR)
and no-reference (NR) quality metrics and the correlation
is computed between objective scores and subjective dif-
ferential MOS (DMOS). The DMOS of the compression
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TABLE III
PERFORMANCE OF OBJECTIVE VQMS ON TEST VIDEOS.

Metrics DMOSC DMOSJC

PLCC SROCC PLCC SROCC
PSNR (FR) 0.687 0.688 0.398 0.473

SSIM [6] (FR) 0.602 0.625 0.373 0.380
HDR-VDP [13] (FR) 0.725 0.739 0.478 0.480

VIF [7] (FR) 0.930 0.931 0.682 0.695
VQM [14] (FR) 0.718 0.720 0.436 0.458

BRISQUE [15] (NR) 0.600 0.621 0.512 0.526
dipIQ [16] (NR) 0.793 0.802 0.488 0.549
HOSA [17] (NR) 0.676 0.614 0.345 0.305

Fig. 7. The scatter plot of DMOSC versus quality drop caused by judder and
the fitted curves and fitting parameters

quality DMOSC is obtained by computing the difference of
MOSC in the reference and compressed videos. The DMOS
of the videos considering judder DMOSJC is computed as
(DMOSC+∆MOS) where ∆MOS denotes the quality differ-
ence (MOSJC - MOSJC) caused by judder. Table 3 shows the
consistency of objective metrics with DMOSC and DMOSJC .
Most of the existing metrics perform reasonably well when
only the compression artefact is considered, whereas all met-
rics fail to accurately predict the quality when considering the
judder degradation impact. Therefore, it is necessary to design
new QoE models and tune current metrics for better perfor-
mance. As an initial effort, we provide an empirical model
of MOS changes (∆MOS) based on the current subjective
tests that can be used as a correction function to better predict
the quality in presence of judder. The fitted model is given as
f(x) = b1x

2+b2x+b3. Figure 7 presents the quality difference
versus the presentation quality DMOS together with the fitted
curves and fitting parameters computed at three velocity levels.
The velocity is required to be known to choose one of these
three models. In future, we will further explore the velocity
estimation methods and more sophisticated QoE models for
objective quality assessment of videos with judder.

IV. CONCLUSION

A database of 60 omnidirectional video sequences is gen-
erated to study the joint effect of judder and compression
artefacts. The dataset is used to perform subjective experiments
to model the human QoE responses in presence of judder. The

test results help to understand the relation between judder and
tracking speed and the impact of the overall content quality. An
interesting observation is that the quality drop due to judder
is more significant at high quality levels. In addition to the
subjective testing methodology, we presented simple models
to describe the quality variations caused by the judder artefact.
The reported results provide guidelines to design more suitable
video QoE models that can consider the judder impact in
quality prediction.
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