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Abstract—Jointly detecting a signal in noise and, in case a
signal is present, estimating the Signal-to-Noise Ratio (SNR)
is investigated in a sequential setup. The sequential test is
designed such that it achieves desired error probabilities and
Mean-Squared Errors (MSEs), while the expected number of
samples is minimized. This problem is first converted to an
unconstrained problem, which is then reduced to an optimal
stopping problem. The solution, which is obtained by means of
dynamic programming, is characterized by a non-linear Bellman
equation. A gradient ascent approach is then presented to select
the cost coefficients of the Bellman equation such that the desired
error probabilities and MSEs are achieved. A numerical example
concludes the work.

Index Terms—sequential analysis, joint detection and esti-
mation, signal-to-noise ratio estimation, Monte Carlo, optimal
stopping

I. INTRODUCTION

Sequential analysis is a field of statistics initially introduced
by Abraham Wald in the late 1940s [1]. The aim of sequential
analysis is to perform statistical inference, e.g., estimation
or detection, with a minimum number of samples while
ensuring a certain inference quality. An overview on sequential
detection methods is given in [2] and on sequential estimation
methods in [3]. Sequential inference is an area of ongoing
research. Especially for low power or time critical applications,
sequential methods are preferable to conventional ones.

In most applications, detection and estimation are intrinsi-
cally coupled and both are of primary interest. This means
that we want to decide between two or more hypotheses
and, depending on the test outcome, estimate one or more
parameters. This problem, referred to as joint detection and
estimation, was first investigated by Middleton and Esposito
[4] in the late 1960s, using a fixed number of samples.
They used a combined risk function in a Bayesian framework
which was then minimized to obtain the optimal detector
and estimator. Fredriksen et al. extended that framework to
multiple hypotheses [5]. More recent solutions for the problem
of joint detection and estimation involve a combined Neyman-
Pearson and Bayesian approach [6] or Bayesian decision-
dependent costs [7]. Joint detection and estimation gained
attention in a lot of applications such as speech processing [8],
biomedical applications [9], communications [10] or change
point detection [11].
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Combining the ideas of sequential analysis and joint detec-
tion and estimation leads to a flexible and powerful framework
applicable for example to state estimation in smart grids
[12]. The problem of sequential joint detection and estimation
was addressed, for example, in [12], where the aim was to
minimize the number of samples subject to a constraint on
a weighted sum of detection and estimation errors. In [13],
we investigated the problem under distributional uncertainties.
Recently, we developed a framework in a Bayesian context,
which minimizes the average number of samples with con-
straints on the detection and estimation errors [14].

The problem of estimating the Signal-to-Noise Ratio (SNR)
arises in a variety of fields such as communications [15], audio
processing [16] or detectors with power constraints [17]. In
communications, for example, estimating the SNR is important
for adaptive demodulation schemes or power control [15]. In
audio processing, estimating the SNR is crucial for speech
enhancement [16].

In this work, we investigate the problem of sequentially
detecting a signal in Gaussian noise and, in the case of
a signal being present, estimating the SNR. This was also
addressed in [18], where the true SNR was treated as an
unknown and deterministic parameter. The aim of [18] is to
minimize the expected run-length under constraints on the
error probabilities as well as a constraint on the relative Mean-
Squared Error (MSE). Contrary to [18], we treat both, the
variances of the signal and the noise, as random variables with
known distribution. Moreover, the constraint on the estimation
accuracy is imposed on the MSE instead of the relative MSE.

The paper strongly builds on our previous work [14], in
which a general framework for Bayesian sequential joint
detection and estimation is derived. Hence, we do not cover
all aspects of the underlying theory in detail, but refer the
interested reader to [14] for an in-depth discussion.

The remainder of the paper is structured as follows. First, a
detailed problem formulation is given in Section II. Then, the
solution is presented in Section III. A numerical example is
discussed in Section IV and Section V concludes the work.

II. PROBLEM STATEMENT

Let XN = (X1, . . . , XN ) be a set of random variables
which is observed sequentially. This sequence can be gen-
erated under two different hypotheses, either H0 or H1. Under
the null hypothesis, the received signal XN is assumed to be
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composed of zero-mean Gaussian noise only, whereas under
the alternative, the received signal XN is assumed to be
the signal of interest disturbed by zero-mean Gaussian noise.
Using a linear model, the two hypotheses can be written as

H0 : XN = WN ,

H1 : XN = SN + WN ,
(1)

where SN = (S1, . . . , SN ) and WN = (W1, . . . ,WN )
denote the signal of interest and the noise, respectively. Both,
the noise and the signal of interest, are zero-mean Gaussian
distributed and their respective variances are denoted by σ2

S

and σ2
W . The variances σ2

S and σ2
W are random variables with

known distributions which have a disjoint support. In addition,
the occurrence of each hypothesis Hi, i = 0, 1, is random
with probability p(Hi). It is further assumed, that the random
variables σ2

S and σ2
W as well as SN and WN are statistically

independent. Moreover, conditioned on σ2
S respective σ2

W ,
the sequences SN and WN are independent and identically
distributed.

Since SN and WN are zero-mean Gaussian distributed, the
two hypotheses can be expressed in terms of the distributions
of the received signal XN as

H0 : Xn ∼ N (0, σ2
W ), σ2

W ∼ p(σ2
W ) ,

H1 : Xn ∼ N (0, σ2
S + σ2

W ), σ2
S ∼ p(σ2

S), σ2
W ∼ p(σ2

W ) .

The aim is to decide between these two hypotheses, and,
in case we decide in favor of H1, to estimate the SNR
θ =

σ2
S

σ2
W

. Since optimal methods for detection and estimation
do not necessarily result in an overall optimal performance
[6], we have to jointly solve the detection and estimation
problem. Moreover, we are interested to find a procedure with
a minimum number of average used samples, while the error
probabilities and the MSE of the SNR estimate are bounded.
Therefore, a sequential method is needed. Hence, we end up
with a sequential joint detection and estimation problem.

In order the solve this problem, we observe a second
sequence W̃N = (W̃1, . . . , W̃N ), which consists of noise
samples only. This sequence can, for example, be gathered by
a sensor which is shielded against the signal of interests but has
the same environmental conditions, like background noise or
the noise of the communication channel. It is further assumed
that the underlying hypothesis and the random parameters
σ2
W , σ

2
S remain constant during the observation time. The

realization of the random parameter σ2
W is the same for the

observed sequences XN and W̃N .
Before a more technical problem formulation can be pro-

vided, we have to introduce a few important quantities. The
stopping and the decision rules at time n are denoted by Ψn,
δn ∈ {0, 1}, respectively. The estimator of the SNR at time n
is denoted by θ̂n. The tuple of stopping rule, decision rule and
estimator is referred to as policy in the following and denoted
by π = {Ψn, δn, θ̂n}0≤n≤N . Furthermore, the time instant at
which the test stops, the so called stopping time, is defined as

τ = min{n ≥ 1 : Ψn = 1} .

As performance measures of the sequential joint detection and
estimation scheme, we use the expected run-length E[τ ] along
the error probabilities and the MSE, which are given by

αi = P (δτ = 1− i |Hi) , i = 0, 1 ,

β = E[1{δτ=1}(θ − θ̂τ )2 |H1] .

In this work, we consider a truncated sequential scheme, i.e.,
we force the test to stop at latest at a fixed time N , which
implies that ΨN = 1. Hence, we can formulate the task of
designing the test as the following constrained optimization
problem:

min
π

E[τ ] s.t. ΨN = 1

P (δτ = 1 |H0) ≤ κ0

P (δτ = 0 |H1) ≤ κ1

E[1{δτ=1}(θ̂ − θ)2 |H1] ≤ κ2

(2)

In (2), the constants κ0, κ1 ∈ (0, 1) are upper bounds on the
detection errors and κ2 ∈ (0,∞) is the upper bound on the
MSE. As long as N is large enough and E[θ2 |H1] is finite,
(2) always admits a solution.

III. SOLUTION METHODOLOGY

To solve problem (2), we proceed as in [14]: First, the con-
strained optimization problem is converted to an unconstrained
problem. This unconstrained problem is then reduced to an
optimal stopping problem, which can be solved by means
of dynamic programming. By exploiting the results in [14],
we arrive at a projected gradient ascent to obtain the set of
optimal cost coefficients. Finally, the gradients are evaluated
numerically using Monte Carlo simulations.

A. Reduction to an Optimal Stopping Problem

In order to solve (2), the problem first has to be converted to
an optimal stopping problem. To keep the problem tractable,
it is not solved directly on the observation space but on a
space of sufficient statistics. Conditioned on the variance, both
random variables XN and W̃N are Gaussian distributed with
a continuous prior, hence, we use a sufficient statistic tn, such
that

p(σ2
S , σ

2
W |xn, w̃n) = p(σ2

S , σ
2
W | tn) .

Since the two sequences, XN and W̃N , are Gaussian dis-
tributed with zero mean,

tn =
[
txn, t

w̃
n ]> =

[
1

n

n∑
i=1

x2
i ,

1

n

n∑
i=1

w̃2
i

]>
can be used as a sufficient statistic. The transition kernel and
the initial statistic are denoted by tn+1 = ξtn(xn+1, w̃n+1)
and t0 = [0, 0]>, respectively. First, (2) has to be converted to
an unconstrained optimization problem in which the Lagrange
multipliers of the inequality constraints are denoted by Ci,
i ∈ {0, 1, 2}. Following the ideas from [14], we have to solve
the unconstrained problem first with respect to the decision
rule and then with respect to the estimator. It can be shown
that when using the optimal decision rule and the optimal
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estimator, the design problem reduces to the optimal stopping
problem

min
Ψ

n∑
n=0

E[Φn(n+ g(tn))] , (3)

where we use the short hand notation Φn = Ψn

∏n−1
i=0 (1−Ψi)

and define the instantaneous cost as

g(tn) = min{D0,n(tn), D1,n(tn)} .

This means that the instantaneous cost for stopping at time
n consists of the minimum of D0,n and D1,n. These are the
costs for stopping at time n and deciding in favor of H0 or
H1 and are given by

D0,n(tn) =C1p(H1 | tn) ,

D1,n(tn) =C0p(H0 | tn) + C2p(H1 | tn)Var[θ |H1, tn] .

It can be seen that the cost of deciding in favor of H0 consists
of the detection error only, whereas the cost for deciding in
favor of H1 consists of a weighted sum of a detection and
estimation error. Once the test has stopped, it decides in favor
of the hypothesis whose cost is lower.

B. Characterization of the Cost Function

The cost function of a truncated optimal sequential test can
be described by a system of non-linear integral equations, see,
e.g., [14]. We assume for now fixed and finite cost coefficients
Ci, i ∈ {0, 1, 2}. It can then be shown that the cost function
of the sequential joint detection and estimation problem is
characterized by the recursion

ρn(tn) = min{g(tn), dn(tn)} , for n < N ,

ρN (tN ) = g(tN ) ,
(4)

where dn(tn) are the costs for continuing the test, i.e.,

dn(tn) = 1 + E[ρn+1(tn+1) | tn] .

The optimal sequential scheme stops as soon as the costs for
stopping g(tn) are lower than the costs for continuing dn(tn).
The optimal policy can hence be summarized as:

Ψ?
n = 1{ρn(tn)=gn(tn)}

δ?n = 1{D0,n(tn)>D1,n(tn)}

θ̂?n = E[θ |H1, tn]

(5)

It has to be mentioned that the optimal policy in (5) depends on
the cost coefficients Ci, i ∈ {0, 1, 2}, which are, thus, crucial
for the performance of the test.

C. Optimal Cost Coefficients

To obtain the set of optimal cost coefficients, one could
in principle use the linear programming approach presented
in [14]. However, the linear programming approach can be
computationally demanding and memory consuming. There-
fore, we present an alternative, computationally more efficient
approach that exploits the properties of the particular problem
at hand.

Algorithm 1 Calculation of the Optimal Cost Coefficients
1: inputs: κ0, κ1, κ2, C

0
0 , C

0
1 , C

0
2

2: initialize: Set k ← 0
3: repeat
4: Set k ← k + 1
5: Calculate the policy πk according to (5) using Ck−1

6: Perform Monte Carlo simulation
7: Calculate ∇C according to (8)
8: Set Ck = max{Ck−1 + γ · ∇C, 0}
9: until α̃k0 ≈ κ0 and α̃k1 ≈ κ1 and β̃k ≈ κ2

10: return πk

It can be shown that the cost function at time n = 0 and
using an initial sufficient statistic t0 is equivalent to a weighted
sum of the average run-length, the error probabilities and the
estimation errors, namely

ρ0(t0) = E[τ ] +
1∑
i=0

Cip(Hi)αi + C2p(H1)β . (6)

Due to the strong connection between the derivative of the
cost function with respect to the cost coefficients and the
performance measures [14, Theorem 4.2] [19, Theorem 3.2],
one can obtain the optimal cost coefficients by solving

max
C≥0

{
ρ0(t0)− p(H0)C0κ0 − p(H1)C1κ1 − p(H1)C2κ2

}
,

subject to
ρn(tn) = min{g(tn), 1 + E[ρn+1(tn+1) | tn]} , n < N ,

ρN (tN ) = g(tN ) .

As mentioned before, solving this problem by, for example,
linear programming, can become tedious with increasing di-
mensionality of tn and/or maximum number of samples N .
Hence, we use an approximate but more tractable formulation
to obtain the optimal cost coefficients. We first replace the
term ρ0(t0) in the previous equation by the weighted sum
given in (6). Once a test with fixed cost coefficients Ci,
i ∈ {0, 1, 2}, is designed, the empirical expected run-length,
error probabilities and estimation errors can be obtained by
Monte Carlo simulations. Replacing the expected run-length,
the error probabilities and the estimation errors by their Monte
Carlo estimates, which are denoted by a tilde, we end up with
the final optimization problem

max
C≥0

{
Ẽ[τ̃ ] +

1∑
i=0

Cip(Hi)(α̃i − κi) + C2p(H1)(β̃ − κ2)
}
,

subject to
ρn(tn) = min{g(tn), 1 + E[ρn+1(tn+1) | tn]} , n < N ,

ρN (tN ) = g(tN ) .
(7)

In order to solve (7), we propose an iterative algorithm which
is summarized in Algorithm 1. In each iteration, the cost
functions in (4) are calculated and hence, a policy as stated
in (5) is obtained for a given set of cost coefficients. Next,
a Monte Carlo simulation using this policy is performed. To
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update the set of cost coefficients, the gradient of the objective
function in (7) is calculated and the set of cost coefficients is
shifted in the direction of the gradient. The gradient is given
by [14, Theorem 4.2] [19, Theorem 3.2]

∇C = [p(H0)(α̃0 − κ0), p(H1)(α̃1 − κ1), p(H1)(β̃ − κ2)] .
(8)

Since the cost coefficients have to be non-negative, the shifted
set of cost coefficients has to be projected on the set of feasible
coefficients. Moreover, in Algorithm 1, the gradient is scaled
by a scalar γ which is used to control the convergence speed
of the algorithm.

According to [14], the cost coefficients act as a slack
variable, i.e., an optimal cost coefficient may be equal to
zero if the corresponding constraint is implicitly fulfilled by
another detection/estimation constraint. For the case, that all
cost coefficients Ci, i ∈ {0, 1, 2}, are non-zero, all constraints
are fulfilled with equality. To simplify notation, we focus on
the latter case, though the procedure can be easily extended
to deal with the general problem.

IV. NUMERICAL RESULTS

To validate the proposed approach and to illustrate some
characteristics of the optimal test, we present a numerical
example. Similar to [14], we use a two-step procedure for
benchmarking, more precisely, a truncated Sequential Prob-
ability Ratio Test (SPRT) followed by an Minimum Mean-
Squared Error (MMSE) estimator. The SPRT updates the
likelihood ratio at every time instant and compares it to two
predefined thresholds to decide whether to stop or to continue
sampling. The likelihood ratio at time n can be calculated as

Λ(tn) =

∫ ∫
p(tn |σ2

S , σ
2
W ,H1)p(σ2

S , σ
2
W )dσ2

Sdσ2
W∫

p(tn |σ2
W ,H0)p(σ2

W )dσ2
W

and the thresholds are chosen according to Wald [1]

A =
1− κ1

κ0
and B =

κ1

1− κ0
.

Once the SPRT has stopped, we use an MMSE estimator to
estimate the SNR.

In order to illustrate the proposed approach we chose the
following example

H0 : Xn ∼ N (0, σ2
W ), σ2

W ∼ U(0.1, 1) ,

H1 : Xn ∼ N (0, σ2
S + σ2

W ), σ2
S ∼ U(1.2, 2) ,

σ2
W ∼ U(0.1, 1) ,

where U(a, b) denotes the uniform distribution on [a, b]. This
corresponds to an SNR ranging approximately from 0.8 dB to
13 dB. For this example, we want to design a test that uses
at most 80 samples, with constraints on the error probabilities
of κi = 0.05, i ∈ {0, 1}, and a constraint on the MSE of
κ2 = 1.25. The prior probabilities of both hypotheses were set
to p(H0) = p(H1) = 0.5. In order to solve the problem numer-
ically, all quantities have to be discretized. This discretization
is summarized in Table I. To obtain the posterior mean and the
posterior variance, we refer to importance sampling [20], since

TABLE I
SIMULATION SETUP

quantity domain #grid points

σ2
W [0.1, 1.1] 101

σ2
S [0.6, 2, 2] 161

tn [0, 10]× [0, 3] 100× 103

xn [−8, 8] 100

wn [−6, 6] 100

standard numerical integration techniques suffer from large
numerical inaccuracies especially for large n. For importance
sampling, we use the prior p(σ2

S , σ
2
W ) as proposal distribution

and generate 105 samples of σ2
S and σ2

W . The detection and
estimation errors are estimated using 5 ·105 Monte Carlo runs
in each iteration. Furthermore, we stop the iterative algorithm
if the error probabilities do not differ more than 10−3 from the
constraints, whereas the estimation errors can differ 5 · 10−2

from the constraint. The initial cost coefficients were set to
C0 = [50, 150, 500]. The optimal cost coefficients obtained
by Algorithm 1 are C ≈ [44.8, 572.1, 111.6].

In Table II, the Monte Carlo results of the approximately
optimal test are shown along the two-step procedure, where
105 Monte Carlo runs are used for evaluation. As one can learn
from Table II(a), the optimal test hits the constraints exactly,
except for the tolerance used during the design process. The
two-step procedure, on the other hand, provides much smaller
error probabilities than the constraints at the cost of exceeding
the constraint on the MSE by a factor of approximately 3.5.
In Table II(b) it can further be seen that the average run-
length of the two-step procedure is much smaller than the one
of the optimal scheme at the cost of violating the estimating
constraint. Fig. 1 displays the evolution over time of both, the
optimal and the SPRT policy for three distinct time instances.
For the SPRT, only the corridor for continuing the test is
shown, the decision region in favor of H0 and H1 are found left
and right of this corridor, respectively. Starting with Fig. 1(a),
one can see that at small time instances, the optimal policy
consists of only a single region in which the test continues
and a region in which the test stops and decides in favor of
H1. This is somehow counterintuitive, as one would expect
the optimal test to not allow for an early decision in favor
of H1, due to the high posterior variance. Contrary to [14],
where the boundary of the SPRT followed more or less the
policy of the optimal scheme, but with a much broader corridor
for continuing, the corridor for continuing here clearly differs
between the optimal procedure and the SPRT. For n = 25,
which is depicted in Fig. 1(b), the corridor for continuing the
SPRT becomes similar to the vertical corridor of the optimal
test, but is shifted. The optimal scheme also has a horizontal
corridor for continuing, which is not the case for the SPRT.
The policy for n = 70 is shown in Fig. 1(c), where one can
see that the vertical corridor for continuing the optimal test,
present in Fig. 1(b) is now closed. In contrast to that, the SPRT
still has a small vertical corridor in which the test continues.
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Fig. 1. Evolution of the optimal policy over time.

TABLE II
SIMULATION RESULTS

(a) Detection and estimation errors

constraints empirical

κ tolerance optimal two-step

P (δτ = 1 |H0) 0.050 ±0.001 0.050 0.024

P (δτ = 0 |H1) 0.050 ±0.001 0.049 0.042

E[1{δτ=0}(θ̂τ − θ)2 |H1] 1.25 ±0.05 1.27 5.69

(b) Run-lengths

optimal two-step

E[τ |H0] 17.7 11.2

E[τ |H1] 29.8 8.7

E[τ ] 23.8 9.9

Again, the horizontal corridor for continuing the test is only
present for the optimal scheme and not for the SPRT. This
horizontal corridor is due to the fact that the posterior variance
of the SNR is very high in this region and would hence lead
to large estimation errors if the test stopped.

V. CONCLUSION

Based on a linear model, we have addressed the problem of
sequential joint detection and SNR estimation in a Bayesian
framework. The solution is characterized by a non-linear
Bellman equation. The latter characterizes the optimal policy,
which is parametrized by three cost coefficients. To achieve
a predefined performance in terms of error probabilities and
MSE, we propose a scheme for choosing the cost coefficients.
The performance of the optimal test and the gap to a subop-
timal scheme, as well as the evolution of the optimal policy
over time, are illustrated by a numerical example.
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