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Abstract—This paper presents a Joint Graph Learning and
Signal Representation algorithm, called JGLSR, for simultaneous
topology learning and graph signal representation via a learned
over-complete dictionary. The proposed algorithm alternates
between three main steps: sparse coding, dictionary learning,
and graph topology inference. We introduce the ”transformed
graph” which can be considered as a projected graph in the
transform domain spanned by the dictionary atoms. Simulation
results via synthetic and real data show that the proposed
approach has a higher performance when compared to the well-
known algorithms for joint undirected graph topology inference
and signal representation, when there is no information about
the transform domain. Five performance measures are used to
compare JGLSR with two conventional algorithms and show its
higher performance.

Index Terms—Graph signal processing, dictionary learn-
ing, topology inference, signal recovery, multi-variate signal

I. INTRODUCTION

Over the past couple of decades, many problems in signal
processing, machine learning, and pattern recognition dealt
with the high dimensional data, having signal x ∈ RN . A set
of such signals {x[k]}Kk=1 can be represented as an N × K
data matrix X. Matrix factorization of X has given significant
contribution in data analysis such as data compression, dimen-
sionality reduction, low dimensional signal representation, and
information retrieval [1]–[4]. However, the above methods can
not capture the possible nonlinearity or structure inherent in
the data input space. In many real world applications, the data
space follows a geometrical structure. By exploiting this prior
information, the data representation can be more accurate. In
this context, many manifold learning algorithms have been
proposed, e.g. ISOMAP [5] and Locally Linear Embedding
[6].

A standard way to represent pairwise connections between
entities is by using affinity graphs. Signal representation over
the underlying graph is well motivated by Shuman and his
colleagues [7] in the seminal work of the emerging field
of signal processing on graphs. In this framework, a graph
signal resides on vertices of the underlying graph, where the
graph captures space structure among entities. Cai et al. [8]
applied an affinity graph to encode the geometrical structure of
dataset and proposed a graph regularized non-negative matrix
factorization algorithm. Shahid and his coworkers exploited
the graph Laplacian matrix and enhanced the standard PCA

to recover the low rank representation of the data matrix [9].
Zheng et. al. [10] proposed an algorithm to learn the sparse
representation of the data when its local structure is taken into
account.

The above mentioned approaches assumed that the un-
derlying graph topology is known a priori. But in many
applications, the graph structure is unknown and has to be
estimated from the input data. In this context, some algo-
rithms investigate the undirected network topology, e.g. [11],
or directed topology inference, like [12], [13], for specific
applications. Moreover, some researches investigated graph
topology learning and signal representation, like [11] and [14].
In [11], the input graph signals are represented based on the
classical factor analysis model and a learning algorithm, called
GL-SigRep, is proposed to recover the signal and the graph
topology, simultaneously. Yankelevsky and Elad [14] proposed
a method, called graph Dictionary Learning (graphDL) for
graph topology inference and dictionary learning. Sardellitti
et al. [15] proposed a general framework for graph topology
inference via the transform learning, but with the limitation of
dictionary completeness and the orthonormality of atoms.

Our Contribution: We propose a new algorithm for Joint
Graph Learning and Signal Representation via learning of the
following items:
• The set of dictionary atoms,
• The sparse coefficients, representing the signals in the

transform domain,
• The graph topology of the data space, representing the

underlying geometry of the data domain.
The proposed method has no assumptions on the Gaussian-

ity of the input data, as [11] has, or a priori knowledge about
the dictionary. Moreover, JGLSR considers the importance of
the atom coherence and tries to reduce the average coherence,
while the graphDL uses some empirical regularization param-
eters to have a dictionary with reasonable coherence [14].
Also in JGLSR, the dictionary is not the eigenvector matrix
of the graph Laplacian and hence the graph signals may not
share a common support, like the transform learning method
proposed in [15]. Totally, JGLSR is a more general approach,
by including more flexible terms in the objective function.

The rest of this paper is organized as follows; Section II
presents a brief overview on graph signal processing. The
derivation of the proposed algorithm for the simultaneous
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graph topology inference, signal recovery, and dictionary
learning is in section III. Finally, experimental results and
conclusion are given in sections IV and V, respectively.

II. GRAPH SIGNAL PROCESSING

Suppose G = (V, E) is a simple graph (i.e. undirected, no
self-loop, and no multi-edge) with the vertex set V , including
vi’s for i = 1, 2, ..., N and edge set E . The number of edges
|E| and N are called the size and the order of the graph,
respectively. The elements of the weight matrix W ∈ RN×N+

are positive edge weights connecting adjacent nodes. Thus,
wij = 0 means no connection between the node vi and the
node vj and because of undirectionality, wij = wji > 0 and
also ”no self loop” means wii = 0. The graph degree matrix
D is a diagonal matrix defined as D = diag(W · 1N ), where
1N is the all ones vector of size N × 1. The combinatorial
graph Laplacian and the normalized Laplacian are defined as
L = D−W and Lnorm = IN −D−

1
2 WD−

1
2 , respectively.

The k’th graph signal is represented by f [k] as follows:

f [k] : V → RN , vi 7→ fi [k ]

f [k] =
(
f1 [k ], f2 [k ], ..., fN [k ]

)T ∈ RN ,
(1)

where T denotes the transpose operator. In most of real
applications, the signal is considered to be smooth with respect
to the intrinsic structure of the graph. The ”smoothness” means
that two neighbor nodes which are strongly connected to each
other (large Wij), have highly similar data values. The local
variation for signal f [k] can be defined as follows

Sl[k] :=
1

2

N∑
i=1

N∑
j=1

‖fi[k]− fj [k]‖22Wij . (2)

and then, the global variation is considered as a measure of
total smoothness [7] as follows

St :=
K∑
k=1

Sl[k] =
1

2

K∑
k=1

f [k]TLf [k] = Tr
(
FTLF

)
. (3)

where F =
[
f [1], . . . , f [K]

]
is the N ×K matrix.

III. GRAPH-SIGNAL REPRESENTATION

The data matrix X is represented as follows:

X = UY + E, (4)

where Y ∈ RM×K and E are the coefficient and represen-
tation error matrices, respectively and N < M < K for the
over-complete dictionary U ∈ RN×M . Our proposed method
aims at solving the following minimization problem

argmin
U,Y,L

‖X−UY‖2F + α1Tr
(
(UY)TLUY

)
+α2

K∑
k=1

‖y[k]‖1 + α3 ‖L‖2F + α4r(U)

s.t. Lij = Lji, Lij ≤ 0 if i 6= j, L · 1N = 0N ,

Tr(L) = c0,

diag(UTU) = 1M .

(5)

where αi ∈ R+, i = 1, ..., 4 are regularization parameters, and
0N is an all zero vector of size N × 1. The operator diag(·)
constructs a vector of the diagonal elements of its input matrix
and y[k] is the kth column of Y. The first term of the objective
function minimizes the Frobenius norm of the error and the
second term promotes smoothness of the represented signals
in the dictionary domain, i.e. UY, over the underlying graph.
The third term encourages coefficient sparsity and the fourth
term controls the off diagonal entries of the Laplacian matrix
while the constraint Tr(L) = c0 controls the diagonal elements
and avoids the trivial solution, for some constant c0. The first
three constraints guarantee that the estimated L is a valid
Laplacian. These constraints also prevent any identifiability
issue for estimated dictionary and Laplacian matrices. The last
constraint forces dictionary atoms to be normalized and the last
term in the objective function is to encourage low coherence
among atoms, defined in [16] as follows

r(U) := −
∑

1≤m<m′≤M

log(1− (u[m]Tu[m′])2). (6)

Considering the importance of dictionary coherence and
represented signal smoothness (instead of observed signal
smoothness) are two main ideas in the proposed minimization
problem, leading to a better performance. The objective func-
tion of (5) is convex for each variable separately. In another
word, if any two of U, L, and Y are kept fixed, the objective
function in (5) is convex with respect to the third one. Thus, a
local minimum can be achieved via an alternating method as
follows; In section III-A, we keep L and U fixed and solve
the sparse coding problem. Then, L and Y are kept fixed and
the dictionary is estimated in section III-B. Finally, U and Y
are kept fixed and (5) is solved with respect to L in section
III-C to infer the graph topology.

A. Finding the Sparse Coefficients

The aim is to solve the following minimization problem

argmin
Y

‖X−UY‖2F +α1Tr(YT L̃Y)+α2

K∑
k=1

‖y[k]‖1 . (7)

where L̃ = UTLU is the graph Laplacian matrix in the
dictionary domain. In other words, signal smoothness in obser-
vations domain can be considered as coefficients smoothness
in the dictionary domain. Since L is symmetric and positive
semi-definite, its eigendecomposition can be represented as
L = QΛQT where Q and Λ are the eigenvector and
eigenvalue matrices, respectively. Thus,

L̃ = UTQΛQTU = ÛΛÛT , (8)

where Û = UTQ is the graph Fourier transform (GFT) of
dictionary atoms1.

1For an orthonormal complete dictionary U ∈ RN×N , the eigenvalues
of the Laplacian and the transformed one are the same and the eigenvectors
of the transformed graph Laplacian are the GFTs of the dictionary atoms.
However, here, we can not use this simplification, since the dictionary is
assumed over-complete, unlike what discussed in [15]
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The objective function in (7) is convex but non-
differentiable due to the `1-regularization term. Thus, the
standard unconstrained minimization approaches can not be
used to find a closed form solution. Here, a solution based on
Alternating Direction Method of Multipliers (ADMM) [17] is
proposed. The problem (7) can be rewritten as follows,

argmin
y[1],...,y[K]

K∑
k=1

‖x[k]−Uy[k]‖22 + α1

K∑
k=1

yT [k]L̃y[k]

+α2

K∑
k=1

‖y[k]‖1 .

(9)

This objective function is separable over y[k]’s. Thus, each
y[k] is updated individually while keeping all other ones fixed.
To solve (9) for the k’th variable, we have the following vector
optimization problem,

argmin
y[k]

‖x[k]−Uy[k]‖22+α1y
T [k]L̃y[k]+α2 ‖y[k]‖1 . (10)

In ADMM approach, the non-differentiable sparsity term is
separated from the rest and (10) is rewritten as

argmin
y[k],z[k]

l(y[k]) + g(z[k])

s.t. y[k]− z[k] = 0M ,
(11)

where l(y[k]) = ‖x[k]−Uy[k]‖22 + α1y
T [k]L̃y[k] and

g(z[k]) = α2 ‖z[k]‖1. The scaled form of ADMM algorithm
consists of the following steps:

yτ+1[k] :=argmin
y[k]

(
l(y[k]) +

ρ

2
‖y[k]− zτ [k] + vτ [k]‖22

)
zτ+1[k] :=argmin

z[k]

(
g(z[k]) +

ρ

2

∥∥z[k]− yτ+1[k]− vτ [k]
∥∥2
2

)
vτ+1[k] :=yτ+1[k] + vτ [k]− zτ+1[k],

(12)
where ρ > 0, τ and v[k] are called the penalty parameter,
the ADMM iteration number, and the scaled dual variable,
respectively [17]. To solve the sub-problem of updating y[k],
by simple derivation, the following system of equation is
obtained(

UTU +
ρ

2
IM + α1L̃

)
y[k] = UTx[k] +

ρ

2
(zτ [k]− vτ [k]).

(13)
where due to the positive definiteness of the matrix on the
lefthand side, a Cholesky decomposition can solve efficiently.

For the sub-problem of updating z[k], a closed form solution
is given by using subdifferential calculus [18] as follows

zτ+1[k] = Sα2
ρ
(yτ+1[k] + vτ [k]), (14)

where the element-wise soft thresholding operator Sκ(a) is the
proximity operator of the `1-norm and given as below

Sκ(a) =


a− κ, a > κ

0, |a| ≤ κ
a+ κ a < −κ.

(15)

B. Dictionary Learning

To estimate U, (5) is reduced to the following problem

argmin
U

‖X−UY‖2F + α1Tr(YTUTLUY) + α4r(U),

s.t. diag(UTU) = 1M .
(16)

where the constraint normalizes the dictionary atoms. This
minimization problem can be solved by conventional algo-
rithms, like the L-BFGS [19] which is used here for simula-
tions.

C. Graph Topology Inference

The minimization problem with respect to L is given as

argmin
L

α1Tr(YTUTLUY) + α3 ‖L‖2F

s.t. Lij = Lji, Lij ≤ 0 if i 6= j, L · 1N = 0N ,

Tr(L) = c0.

(17)

Since the optimization variable L is a symmetric matrix,
this problem may only be solved for the entries on and below
the main diagonal. By vectorizing the lower triangular part of
L and representing the half-vectorization and vectorization of
L by vech(L) ∈ R

N(N+1)
2 and vec(L) ∈ RN2

, respectively,
and applying the duplication matrix Mdup [20], we have

Mdup · vech(L) = vec(L). (18)

Moreover, the following identities are applicable to rewrite
the problem of (17) in a vector form

Tr(YTUTLUY) = vec(UYYTUT )T · vec(L), (19)

‖L‖2F = vec(L)T · vec(L). (20)

By applying (18) together with (19) and (20), (17) can be
rewritten in the following vector optimization problem

argmin
vech(L)

α1vec(UYYTUT )T · Mdup · vech(L)

+α3vech(L)T · MT
dup · Mdup · vech(L)

s.t. B · vech(L) ≤ 0N(N−1)
2

,(
1TN ⊗ IN

)
· Mdup · vech(L) = 0N(

vec(IN )
)T · Mdup · vech(L) = c0.

(21)

where ⊗ denotes the Kronecker product and B is the matrix
that handles the inequality constraint in (17). The minimization
problem (21) is a quadratic convex problem and can be solved
efficiently via several methods [17], [21]. Here, we used CVX,
a package for specifying and solving convex programs [22].

IV. SIMULATIONS

JGLSR is tested by synthetic data, generated based on a
known graph, and a real set of temperature data from the states
of the USA mainland [23].

The synthetic data is constructed via a Gaussian Radial
Basis Function (RBF) following the scenario explained in
[14]. This class of graphs models several real applications
networks. In each trial, the coordinates of N = 25 vertices are
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Fig. 1: The normalized mean squared deviation and error of
graph topology estimation from synthetic data.
TABLE I: Averages of performance measures over different
SNRs (synthetic data set).

Recall Precision F-measure
JGLSR 0.90 0.87 0.89

graphDL 0.61 0.32 0.42
GL-SigRep 0.36 0.99 0.52

generated uniformly at random in the square [0,
√
5]× [0,

√
5]

and the edge weights were determined with an RBF, i.e.
exp
(
− d(i, j)2/2σ2

)
where d(i, j) is the distance between

vertices i and j. We set σ = 0.5 and remove the edges
whose weights are smaller than 0.5 to keep around 17%. The
graph Laplacian is computed and normalized by its trace. To
construct a smooth dictionary over the graph, we generate
an initial random dictionary U0 and then put U =

(
IN +

λL
)−1

U0, where λ = 5 [14]. A random sparse coefficient
matrix Y ∈ RN×K for K = 1000 samples with a predefined
sparsity is drawn and multiplied by the dictionary and then
contaminated by an independent noise with different signal to
noise ratios (SNR) to construct X. Given X, the underlying
graph topology is estimated by JGLSR, graphDL [14] and GL-
SigRep [11]. The results are compared by using the following
performance measures
• Normalized Mean Squared Deviation of graph topology

estimation: NMSD = 1
N2 ·
‖L−L̂‖2

2

‖L‖22
, where L̂ denotes the

estimated Laplacian matrix,
• Normalized Mean Squared Error of signal reconstruction:

NMSE = 1
N ·K ·

‖X−X̂‖2
2

‖X‖22
,

• Precision: the number of truly recovered edge to the total
reconstructed edges in the estimated graph,

• Recall: the number of truly recovered edge to the number
of edges in the ground-truth graph,

• F-measure = 2·Precision·Recall
Precision+Recall .

In synthetic data simulations, the regularization parameters
are selected empirically, by exhaustive search over different
sets of values for the various compared algorithms. We run

Fig. 2: The learned graph topology from real temperature data:
the background map is the mainland of the USA.

simulations for 100 trials and averaged the results. Fig. 1
shows the higher performance of JGLSR for different SNR.
Table 1 also compares three performance measures by aver-
aging the results over different SNRs.

For real data experiment, we store daily temperatures of
N = 48 states for the years 2011 to 2013, i.e. K = 1096.
In other words, graph signals are average daily temperatures
measured across the states. Unlike the first simulation, here
we do not access to the true underlying graph, but we
consider a geographical based graph, described as follows,
as the groundtruth graph. We construct a graph whose nodes
represent the states, with the edge weights computed by
the Gaussian RBF of each two states distance. Given the
input data matrix, all three algorithms are run to infer the
temperature network topology. The parameters are set as
α1 = 0.001, α2 = 0.1, α3 = 5, α4 = 100, and σ = 0.001. The
F-measure for GL-SigRep, graphDL, and JGLSR are 0.51,
0.59, and 0.64, respectively. Regarding the graph topology
estimation error, NMSD for all methods is in the order of
10−4. Fig. 2 shows the learned graph from this data set for
the states of the USA mainland. From the learned graph, we
can infer that a state weather can affect the neighboring states,
which is also probable in practice. The edge concentration is
mainly in the right part of the map, illustrating more dense
regions and closed by cities, when compared to the west coast.
Moreover, there are few edges in the middle of the figure
which can be probably due to the Rocky mountains.

V. CONCLUSION

In this paper, an algorithm is proposed to represent a set
of multi-variate signal measurements by a learned dictionary.
Moreover, the recovered signals are smooth with respect to the
underlying graph structure which is unknown and has to be
learned. We used an alternating method to learn the dictionary,
the sparse coefficients, and the graph topology, simultaneously.
Besides, the transformed graph in the dictionary domain was
introduced and its relation to the signal smoothness and GFT
was shown. Simulation results from the synthetic data set show
that the proposed method has a better performance, when
compared with the conventional algorithms. Moreover, the
experimental results from real data sets confirm that JGLSR
is a practical algorithm to model temperature sensor network.
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